Jolien Creighton

Jolien Creighton

University of Wisconsin-Milwaukee

H-index: 131

North America-United States

Professor Information

University

University of Wisconsin-Milwaukee

Position

Professor of Physics

Citations(all)

109983

Citations(since 2020)

73430

Cited By

65696

hIndex(all)

131

hIndex(since 2020)

88

i10Index(all)

278

i10Index(since 2020)

241

Email

University Profile Page

University of Wisconsin-Milwaukee

Research & Interests List

general relativity

gravitational waves

Top articles of Jolien Creighton

Template bank for compact binary mergers in the fourth observing run of Advanced LIGO, Advanced Virgo, and KAGRA

Matched-filtering gravitational-wave search pipelines identify gravitational-wave signals by computing correlations, ie, signal-to-noise ratios, between gravitational-wave detector data and gravitational-wave template waveforms. Intrinsic parameters, the component masses and spins, of the gravitational-wave waveforms are often stored in “template banks,” and the construction of a densely populated template bank is essential for some gravitational-wave search pipelines. This paper presents a template bank that is currently being used by the GstLAL-based compact binary search pipeline in the fourth observing run of the LIGO, Virgo, and KAGRA collaboration, and was generated with a new binary tree approach of placing templates, manifold. The template bank contains 1.8× 10 6 sets of template parameters covering plausible neutron star and black hole systems up to a total mass of 400 M⊙ with component …

Authors

Shio Sakon,Leo Tsukada,Heather Fong,James Kennington,Wanting Niu,Chad Hanna,Shomik Adhicary,Pratyusava Baral,Amanda Baylor,Kipp Cannon,Sarah Caudill,Bryce Cousins,Jolien DE Creighton,Becca Ewing,Richard N George,Patrick Godwin,Reiko Harada,Yun-Jing Huang,Rachael Huxford,Prathamesh Joshi,Soichiro Kuwahara,Alvin KY Li,Ryan Magee,Duncan Meacher,Cody Messick,Soichiro Morisaki,Debnandini Mukherjee,Alex Pace,Cort Posnansky,Anarya Ray,Surabhi Sachdev,Divya Singh,Ron Tapia,Takuya Tsutsui,Koh Ueno,Aaron Viets,Leslie Wade,Madeline Wade,Jonathan Wang

Journal

Physical Review D

Published Date

2024/2/26

A non-parametric exploration of binary black hole population properties using gravitational wave observations.

F13. 00005: A non-parametric exploration of binary black hole population properties using gravitational wave observations.*

Authors

Anarya Ray,Jolien Creighton

Journal

Bulletin of the American Physical Society

Published Date

2024/4/4

Performance of the low-latency GstLAL inspiral search towards LIGO, Virgo, and KAGRA’s fourth observing run

GstLAL is a stream-based matched-filtering search pipeline aiming at the prompt discovery of gravitational waves from compact binary coalescences such as the mergers of black holes and neutron stars. Over the past three observation runs by the LIGO, Virgo, and KAGRA Collaboration, the GstLAL search pipeline has participated in several tens of gravitational wave discoveries. The fourth observing run (O4) is set to begin in May 2023 and is expected to see the discovery of many new and interesting gravitational wave signals which will inform our understanding of astrophysics and cosmology. We describe the current configuration of the GstLAL low-latency search and show its readiness for the upcoming observation run by presenting its performance on a mock data challenge. The mock data challenge includes 40 days of LIGO Hanford, LIGO Livingston, and Virgo strain data along with an injection campaign in …

Authors

Becca Ewing,Rachael Huxford,Divya Singh,Leo Tsukada,Chad Hanna,Yun-Jing Huang,Prathamesh Joshi,Alvin KY Li,Ryan Magee,Cody Messick,Alex Pace,Anarya Ray,Surabhi Sachdev,Shio Sakon,Ron Tapia,Shomik Adhicary,Pratyusava Baral,Amanda Baylor,Kipp Cannon,Sarah Caudill,Sushant Sharma Chaudhary,Michael W Coughlin,Bryce Cousins,Jolien DE Creighton,Reed Essick,Heather Fong,Richard N George,Patrick Godwin,Reiko Harada,James Kennington,Soichiro Kuwahara,Duncan Meacher,Soichiro Morisaki,Debnandini Mukherjee,Wanting Niu,Cort Posnansky,Andrew Toivonen,Takuya Tsutsui,Koh Ueno,Aaron Viets,Leslie Wade,Madeline Wade,Gaurav Waratkar

Journal

Physical Review D

Published Date

2024/2/23

A joint Fermi-GBM and Swift-BAT analysis of Gravitational-wave candidates from the third Gravitational-wave Observing Run

The detection of GW170817 (Abbott et al. 2017b) coincident with the short gamma-ray burst GRB 170817A (Goldstein et al. 2017; Savchenko et al. 2017) was a groundbreaking discovery for the multimessenger era. Not only was it the first binary neutron star (BNS) merger detected by the gravitational-wave (GW) instruments Advanced LIGO (Aasi et al. 2015) and Advanced Virgo (Acernese et al. 2014), it was also the first, and to date only, GW detection with a confirmed electromagnetic (EM) counterpart. Since then, the search for EM emission from more of these extreme events has been at the forefront of multimessenger astronomy, particularly in the gamma-ray energy band, since GRB 170817A demonstrated that BNS mergers are a progenitor of short gamma-ray bursts (GRBs; Abbott et al. 2017a). GWs have also been observed from the mergers of other compact objects, such as binary black hole (BBH) and …

Authors

C Fletcher,J Wood,R Hamburg,P Veres,CM Hui,E Bissaldi,MS Briggs,E Burns,WH Cleveland,MM Giles,A Goldstein,BA Hristov,D Kocevski,S Lesage,B Mailyan,C Malacaria,S Poolakkil,A von Kienlin,CA Wilson-Hodge,M Crnogorčević,J DeLaunay,A Tohuvavohu,R Caputo,SB Cenko,S Laha,T Parsotan,R Abbott,H Abe,F Acernese,K Ackley,N Adhikari,RX Adhikari,VK Adkins,VB Adya,C Affeldt,D Agarwal,M Agathos,K Agatsuma,N Aggarwal,OD Aguiar,Luca Aiello,A Ain,P Ajith,T Akutsu,S Albanesi,RA Alfaidi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,M Ando,T Andrade,N Andres,M Andrés-Carcasona,T Andríc,SV Angelova,S Ansoldi,JM Antelis,S Antier,T Apostolatos,EZ Appavuravther,S Appert,SK Apple,K Arai,A Araya,MC Araya,JS Areeda,M Arène,N Aritomi,N Arnaud,M Arogeti,SM Aronson,KG Arun,H Asada,Y Asali,G Ashton,Y Aso,M Assiduo,S Melo,SM Aston,P Astone,F Aubin,K AultONeal,C Austin,S Babak,F Badaracco,MKM Bader,C Badger,S Bae,Y Bae,AM Baer,S Bagnasco,Y Bai,J Baird,R Bajpai,T Baka,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,B Banerjee,D Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,S Basak,R Bassiri,A Basti,M Bawaj,JC Bayley,M Bazzan,BR Becher,B Bécsy,VM Bedakihale,F Beirnaert,M Bejger,I Belahcene,V Benedetto,D Beniwal,MG Benjamin,TF Bennett,JD Bentley,M BenYaala,S Bera,M Berbel,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare

Journal

arXiv preprint arXiv:2308.13666

Published Date

2023/8/25

GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

The second Gravitational-Wave Transient Catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15∶ 00 UTC and 1 October 2019 15∶ 00 UTC. Here, we present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period with improved calibration and better subtraction of excess noise, which has been publicly released. We employ three matched-filter search pipelines for candidate identification, and estimate the probability of astrophysical origin for each candidate event. While GWTC-2 used a false alarm rate threshold of 2 per year, we include in GWTC-2.1, 1201 candidates that pass a false alarm rate threshold of 2 per day. We calculate the source properties of a subset of 44 high-significance candidates that have a …

Authors

R Abbott,TD Abbott,F Acernese,K Ackley,C Adams,N Adhikari,RX Adhikari,VB Adya,C Affeldt,D Agarwal,M Agathos,K Agatsuma,N Aggarwal,OD Aguiar,L Aiello,A Ain,P Ajith,S Albanesi,A Allocca,PA Altin,A Amato,C Anand,S Anand,A Ananyeva,SB Anderson,WG Anderson,T Andrade,N Andres,T Andrić,SV Angelova,S Ansoldi,JM Antelis,S Antier,S Appert,K Arai,MC Araya,JS Areeda,M Arène,N Arnaud,SM Aronson,KG Arun,Y Asali,G Ashton,M Assiduo,SM Aston,P Astone,F Aubin,C Austin,S Babak,F Badaracco,MKM Bader,C Badger,S Bae,AM Baer,S Bagnasco,Y Bai,J Baird,M Ball,G Ballardin,SW Ballmer,A Balsamo,G Baltus,S Banagiri,D Bankar,JC Barayoga,C Barbieri,BC Barish,D Barker,P Barneo,F Barone,B Barr,L Barsotti,M Barsuglia,D Barta,J Bartlett,MA Barton,I Bartos,R Bassiri,A Basti,M Bawaj,JC Bayley,AC Baylor,M Bazzan,B Bécsy,VM Bedakihale,M Bejger,I Belahcene,V Benedetto,D Beniwal,TF Bennett,JD Bentley,M Benyaala,F Bergamin,BK Berger,S Bernuzzi,CPL Berry,D Bersanetti,A Bertolini,J Betzwieser,D Beveridge,R Bhandare,U Bhardwaj,D Bhattacharjee,S Bhaumik,IA Bilenko,G Billingsley,S Bini,R Birney,O Birnholtz,S Biscans,M Bischi,S Biscoveanu,A Bisht,B Biswas,M Bitossi,M-A Bizouard,JK Blackburn,CD Blair,DG Blair,RM Blair,F Bobba,N Bode,M Boer,G Bogaert,M Boldrini,LD Bonavena,F Bondu,E Bonilla,R Bonnand,P Booker,BA Boom,R Bork,V Boschi,N Bose,S Bose,V Bossilkov,V Boudart,Y Bouffanais,A Bozzi,C Bradaschia,PR Brady,A Bramley,A Branch,M Branchesi,JE Brau,M Breschi,T Briant,JH Briggs,A Brillet,M Brinkmann

Journal

Physical Review D

Published Date

2024/1/5

Searching for gravitational-wave signals from precessing black hole binaries with the GstLAL pipeline

Precession in Binary Black Holes (BBH) is caused by the failure of the Black Hole spins to be aligned and its study can open up new perspectives in gravitational waves (GW) astronomy, providing, among other advancements, a precise measure of distance and an accurate characterization of the BBH spins. However, detecting precessing signals is a highly non-trivial task, as standard matched filtering pipelines for GW searches are built on many assumptions that do not hold in the precessing case. This work details the upgrades made to the GstLAL pipeline to facilitate the search for precessing BBH signals. The implemented changes in the search statistics and in the signal consistency test are then described in detail. The performance of the upgraded pipeline is evaluated through two extensive searches of precessing signals, targeting two different regions in the mass space, and the consistency of the results is examined. Additionally, the benefits of the upgrades are assessed by comparing the sensitive volume of the precessing searches with two corresponding traditional aligned-spin searches. While no significant sensitivity improvement is observed for precessing binaries with mass ratio , a volume increase of up to 100\% is attainable for heavily asymmetric systems with largely misaligned spins. This work paves the way for a large-scale search of precessing signals, possibly leading to an exciting future detection.

Authors

Stefano Schmidt,Sarah Caudill,Jolien DE Creighton,Ryan Magee,Leo Tsukada,Shomik Adhicary,Pratyusava Baral,Amanda Baylor,Kipp Cannon,Bryce Cousins,Becca Ewing,Heather Fong,Richard N George,Patrick Godwin,Chad Hanna,Reiko Harada,Yun-Jing Huang,Rachael Huxford,Prathamesh Joshi,James Kennington,Soichiro Kuwahara,Alvin KY Li,Duncan Meacher,Cody Messick,Soichiro Morisaki,Debnandini Mukherjee,Wanting Niu,Alex Pace,Cort Posnansky,Anarya Ray,Surabhi Sachdev,Shio Sakon,Divya Singh,Ron Tapia,Takuya Tsutsui,Koh Ueno,Aaron Viets,Leslie Wade,Madeline Wade

Journal

arXiv preprint arXiv:2403.17186

Published Date

2024/3/25

arXiv: Ultralight vector dark matter search using data from the KAGRA O3GK run

Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U (1) B− L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U (1) B− L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM.

Authors

AG Abac,ML Chiofalo,G Nieradka,R Pegna,C North,R Bhandare,G Pierra,A Amato,JG Baier,D Chen,B Haskell,F Robinet,M Fyffe,M Arogeti,P Stevens,DD White,TF Davies,E Payne,M Wright,K Johansmeyer,K Hayama,P-F Cohadon,CG Collette,D Sellers,S Hoang,V Sipala,H Heitmann,T O'Hanlon,B Edelman,G McCarrol,AD Huddart,KD Sullivan,T Harder,A Garron,TA Clarke,YT Huang,J Junker,M Hennig,N Hirata,J Portell,R McCarthy,M Weinert,R Poulton,G Ballardin,D Bankar,A Bianchi,M Montani,CD Panzer,X Chen,R Takahashi,J Lange,K Schouteden,Yitian Chen,A Sasli,F Yang,LM Modafferi,ME Zucker,J O'Dell,D Lumaca,AP Spencer,M Millhouse,G Quéméner,M Norman,MJ Szczepańczyk,S-C Hsu,ST Countryman,C Chatterjee,AL James,KN Nagler,E Chassande-Mottin,W Kiendrebeogo,M Tacca,FJ Raab,TR Saravanan,VP Mitrofanov,S Bernuzzi,C Adamcewicz,L Conti,C Tong-Yu,J Golomb,X Li,A Perego,ERG von Reis,J Woehler,G Bogaert,F Fidecaro,B Shen,JM Ezquiaga,D Macri,V Juste,S Sachdev,JD Bentley,R Sturani,TP Lott IV,K Takatani,D Beniwal,U Dupletsa,A Boumerdassi,F Glotin,Y Lee,R Bhatt,A Couineaux,M Wade,N Kanda,J Novak,S Bini,I Ferrante,RA Alfaidi,N Johny,LE Sanchez,J Heinze,J Zhang,M Kinley-Hanlon,AJ Weinstein,T Sainrat,NN Janthalur,A Trovato,A Romero,K Tomita,DE McClelland,B Fornal,M Heurs,AM Gretarsson,A Chincarini,BB Lane,AE Romano,V Fafone,FY Khalili,F Linde,C Messick,A Heffernan,J Gargiulo,V JaberianHamedan,SW Reid,D Moraru,D Pathak,M Iwaya,G Grignani,T Yan,K AultONeal,SA Pai,Y Xu,IM Pinto,KW Chung,C Palomba,J Tissino,T Klinger,Ll M Mir,K Kwan,C Posnansky

Published Date

2024/3/5

Low-latency gravitational wave alert products and their performance at the time of the fourth LIGO-Virgo-KAGRA observing run

Multi-messenger searches for binary neutron star (BNS) and neutron star-black hole (NSBH) mergers are currently one of the most exciting areas of astronomy. The search for joint electromagnetic and neutrino counterparts to gravitational wave (GW)s has resumed with Advanced LIGO (aLIGO)'s, Advanced Virgo (AdVirgo)'s and KAGRA's fourth observing run (O4). To support this effort, public semi-automated data products are sent in near real-time and include localization and source properties to guide complementary observations. Subsequent refinements, as and when available, are also relayed as updates. In preparation for O4, we have conducted a study using a simulated population of compact binaries and a Mock Data Challenge (MDC) in the form of a real-time replay to optimize and profile the software infrastructure and scientific deliverables. End-to-end performance was tested, including data ingestion, running online search pipelines, performing annotations, and issuing alerts to the astrophysics community. In this paper, we present an overview of the low-latency infrastructure as well as an overview of the performance of the data products to be released during O4 based on a MDC. We report on expected median latencies for the preliminary alert of full bandwidth searches (29.5 s) and for the creation of early warning triggers (-3.1 s), and show consistency and accuracy of released data products using the MDC. This paper provides a performance overview for LVK low-latency alert structure and data products using the MDC in anticipation of O4.

Authors

Sushant Sharma Chaudhary,Andrew Toivonen,Gaurav Waratkar,Geoffrey Mo,Patrick Brockill,Deep Chatterjee,Michael W Coughlin,Reed Essick,Shaon Ghosh,Soichiro Morisaki,Pratyusava Baral,Amanda Baylor,Naresh Adhikari,Sarah Antier,Patrick Brady,Gareth Cabourn Davies,Tito Dal Canton,Marco Cavaglià,Jolien Creighton,Sunil Choudahry,Yu-Kuang Chu,Patrick Clearwater,Luke Davis,Thomas Dent,Marco Drago,Becca Ewing,Patrick Godwin,Weichangfeng Guo,Chad Hanna,Rachel Huxford,Ian Harry,Erik Katsavounidis,Manoj Kovalam,Alvin KY Li,Ryan Magee,Ethan Marx,Duncan Meacher,Cody Messick,Xan Morice-Atkinson,Alexander Pace,Roberto De Pietri,Brandon Piotrzkowski,Soumen Roy,Surabhi Sachdev,Leo P Singer,Divya Singh,Marek Szczepanczyk,Daniel Tang,Max Trevor,Leo Tsukada,Verónica Villa-Ortega,Linqing Wen,Daniel Wysocki

Journal

arXiv preprint arXiv:2308.04545

Published Date

2023/8/8

academic-engine

Useful Links