The Natural Products Withaferin A and Withanone from the Medicinal Herb Withania somnifera Are Covalent Inhibitors of the SARS-CoV-2 Main Protease

Journal of Natural Products

Published On 2022/9/13

The current COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) created a global health crisis. The ability of vaccines to protect immunocompromised individuals and from emerging new strains are major concerns. Hence antiviral drugs against SARS-CoV-2 are essential. The SARS-CoV-2 main protease Mpro is vital for replication and an important target for antivirals. Using CMap analysis and docking studies, withaferin A (wifA) and withanone (win), two natural products from the medicinal herb Withania somnifera (ashwagandha), were identified as promising candidates that can covalently inhibit the viral protease Mpro. Cell culture, enzymatic, LC-MS/MS, computational, and equilibrium dialysis based assays were performed. DFT calculations indicated that wifA and win can form stable adducts with thiols. The cytotoxicity of Mpro was significantly reduced by wifA …

Journal

Journal of Natural Products

Published On

2022/9/13

Volume

85

Issue

10

Page

2340-2350

Authors

Fred Guengerich

Fred Guengerich

Vanderbilt University

Position

Professor of Biochemistry

H-Index(all)

175

H-Index(since 2020)

51

I-10 Index(all)

0

I-10 Index(since 2020)

0

Citation(all)

0

Citation(since 2020)

0

Cited By

0

Research Interests

Enzymology

drug metabolism

cytochrome P450

mutagenesis

University Profile Page

Dibyendu Mallick

Dibyendu Mallick

Presidency University

Position

H-Index(all)

14

H-Index(since 2020)

12

I-10 Index(all)

0

I-10 Index(since 2020)

0

Citation(all)

0

Citation(since 2020)

0

Cited By

0

Research Interests

Computational Chemistry

University Profile Page

Mausumi Goswami

Mausumi Goswami

VIT University

Position

Assistant professor

H-Index(all)

11

H-Index(since 2020)

8

I-10 Index(all)

0

I-10 Index(since 2020)

0

Citation(all)

0

Citation(since 2020)

0

Cited By

0

Research Interests

Molecular Spectroscopy

Interstellar Chemistry

Microwave Spectroscopy

Atmospheric Chemistry

University Profile Page

Other Articles from authors

Dibyendu Mallick

Dibyendu Mallick

Presidency University

Polyhedron

Fluorenyl-tethered N-heterocyclic carbene: An effective ancillary support for heteroleptic magnesium organometallics

Judicious designing of ancillary ligands with appropriate stetrolelectronics is critical for the chemistries of electropositive alkaline earths that typically make labile coordination to conventional donor sites. We report here a series of magnesium complexes [(LH)Mg(A)Br(thf)] (A = nBu (1), N(SiMe3)2 (2)), [(L)Mg{N(SiMe3)2}] (3), and [(L)MgMe(thf)] (4) supported by a N-heterocyclic carbene LH ([(Flu)H-(CH2)2-NHCDipp]; Dipp = 2,6-iPr2-C6H3) with a fluorenyl sidearm and its monoanionic version L- ([(Flu)-(CH2)2-NHCDipp] -). Complexes 1, 2, and 4 are characterized by single crystal X-ray diffractometry. 3 and 4 are additionally analyzed by DFT calculations. The pseudo-bidentate L- appears to be quite an effective ancillary support as evident from the monomeric nature of 4 and the thermal stability of 3 and 4 towards the deleterious Schlenk equilibrium. This is also reflected in 4′s catalytic activity in intramolecular …

Dibyendu Mallick

Dibyendu Mallick

Presidency University

Chemical Communications

Fluorenyl-tethered N-heterocyclic carbene (NHC): an exclusive C-donor ligand for heteroleptic calcium and strontium chemistry

Exclusive C-donating ligands are rarely used with kinetically labile heavier alkaline earths (Ca, Sr, Ba). We report herein the aptitude of a combination of NHC with fluorenyl connected by a flexible –(CH2)2– linker as a ligand support for heteroleptic Ca– and Sr–N(SiMe3)2 and iodides. The Ca–N(SiMe3)2 complex even catalyzes the intramolecular hydroamination of aminoalkenes to showcase the effectiveness of this ligand framework.

Fred Guengerich

Fred Guengerich

Vanderbilt University

Journal of Medicinal Chemistry

Identification of Potent and Selective Inhibitors of Acanthamoeba: Structural Insights into Sterol 14α-Demethylase as a Key Drug Target

Fat mass obesity-associated protein (FTO) is a DNA/RNA demethylase involved in the epigenetic regulation of various genes and is considered a therapeutic target for obesity, cancer, and neurological disorders. Here, we aimed to design novel FTO-selective inhibitors by merging fragments of previously reported FTO inhibitors. Among the synthesized analogues, compound 11b, which merges key fragments of Hz (3) and MA (4), inhibited FTO selectively over alkylation repair homologue 5 (ALKBH5), another DNA/RNA demethylase. Treatment of acute monocytic leukemia NOMO-1 cells with a prodrug of 11b decreased the viability of acute monocytic leukemia cells, increased the level of the FTO substrate N6-methyladenosine in mRNA, and induced upregulation of MYC and downregulation of RARA, which are FTO target genes. Thus, Hz (3)/MA (4) hybrid analogues represent an entry into a new class of FTO …

Fred Guengerich

Fred Guengerich

Vanderbilt University

Chemical Research in Toxicology

In Vivo and In Vitro Induction of Cytochrome P450 3A4 by Thalidomide in Humanized-Liver Mice and Experimental Human Hepatocyte HepaSH cells

Autoinduction of cytochrome P450 (P450) 3A4-mediated metabolism of thalidomide was investigated in humanized-liver mice and human hepatocyte-derived HepaSH cells. The mean plasma ratios of 5-hydroxythalidomide and glutathione adducts to thalidomide were significantly induced (3.5- and 6.0-fold, respectively) by thalidomide treatment daily at 1000 mg/kg for 3 days and measured at 2 h after the fourth administration (on day 4). 5-Hydroxythalidomide was metabolically activated by P450 3A4 in HepaSH cells pretreated with 300 and 1000 μM thalidomide, and 5,6-dihydroxythalidomide was detected. Significant induction of P450 3A4 mRNA expression (4.1-fold) in the livers of thalidomide-treated mice occurred. Thalidomide exerts a variety of actions through multiple mechanisms following bioactivation by induced human P450 3A enzymes.

Fred Guengerich

Fred Guengerich

Vanderbilt University

Formation of potentially toxic metabolites of drugs in reactions catalyzed by human drug-metabolizing enzymes

Data are presented on the formation of potentially toxic metabolites of drugs that are substrates of human drug metabolizing enzymes. The tabular data lists the formation of potentially toxic/reactive products. The data were obtained from in vitro experiments and showed that the oxidative reactions predominate (with 96% of the total potential toxication reactions). Reductive reactions (e.g., reduction of nitro to amino group and reductive dehalogenation) participate to the extent of 4%. Of the enzymes, cytochrome P450 (P450, CYP) enzymes catalyzed 72% of the reactions, myeloperoxidase (MPO) 7%, flavin-containing monooxygenase (FMO) 3%, aldehyde oxidase (AOX) 4%, sulfotransferase (SULT) 5%, and a group of minor participating enzymes to the extent of 9%. Within the P450 Superfamily, P450 Subfamily 3A (P450 3A4 and 3A5) participates to the extent of 27% and the Subfamily 2C (P450 2C9 and P450 2C19 …

Fred Guengerich

Fred Guengerich

Vanderbilt University

Journal of Biological Chemistry

Proteomics, modeling, and fluorescence assays delineate cytochrome b5 residues involved in binding and stimulation of cytochrome P450 17A1 17, 20-lyase

Cytochrome b5 (b5) is known to stimulate some catalytic activities of cytochrome P450 (P450, CYP) enzymes, although mechanisms still need to be defined. The reactions most strongly enhanced by b5 are the 17,20-lyase reactions of P450 17A1 involved in steroid biosynthesis. We had previously used a fluorescently labeled human b5 variant (Alexa 488-T70C-b5) to characterize human P450 17A1-b5 interactions, but subsequent proteomic analyses indicated that lysines in b5 were also modified with Alexa 488 maleimide in addition to Cys-70, due to disulfide dimerization of the T70C mutant. A series of b5 variants were constructed with Cys replacements for the identified lysine residues and labeled with the dye. Fluorescence attenuation and the function of b5 in the steroid lyase reaction depended on the modified position. Apo-b5 (devoid of heme group) studies revealed the lack of involvement of the b5 heme in …

Dibyendu Mallick

Dibyendu Mallick

Presidency University

Dalton Transactions

Flexible NHC-aryloxido aluminum complex and its zwitterionic imidazolium aluminate precursor in ring-opening polymerization of ε-caprolactone

Anionic donor-functionalized NHC (N-heterocyclic carbene) complexes of Al are rare. We report one such case here, an NHC-aryloxido AlMe2 complex [Al(L)Me2] (2), following a stepwise synthesis from the proligand [HO-4,6-tBu2-C6H2-2-CH2{CH(NCHCHNAr)}]Br [LH2Br; Ar = 2,6-iPr2-C6H3 (Dipp)] and AlMe3via the zwitterionic intermediate [Al(LH)Me2Br] (1). The ligand's flexibility in 2 is evident from the conformational fluxionality revealed by VT-1H NMR spectroscopic analysis. The ∠O–Al–C (ca. 100.5°) bite angle is also wider than the ∠O–Ti–C (ca. 80.6°) as seen in our recently reported Ti complex [Ti(L)(NMe2)2Br]. DFT analysis showed that the CNHC–Al bond is significantly ionic, as is the CNHC–Ti bond. Both 1 and 2 are active in the ring-opening polymerization (ROP) of ε-caprolactone (CL). 2, similar to [Ti(L)(NMe2)2Br], exhibits bifunctional MLC-type monomer activation, but only at an elevated …

Fred Guengerich

Fred Guengerich

Vanderbilt University

Angewandte Chemie

Oxygen‐18 Labeling Reveals a Mixed Fe− O Mechanism in the Last Step of Cytochrome P450 51 Sterol 14α‐Demethylation

The 14α‐demethylation step is critical in eukaryotic sterol biosynthesis, catalyzed by cytochrome P450 (P450) Family 51 enzymes, for example, with lanosterol in mammals. This conserved three‐step reaction terminates in a C−C cleavage step that generates formic acid, the nature of which has been controversial. Proposed mechanisms involve roles of P450 Compound 0 (ferric peroxide anion, FeO2−) or Compound I (perferryl oxygen, FeO3+) reacting with either the aldehyde or its hydrate, respectively. Analysis of 18O incorporation into formic acid from 18O2 provides a means of distinguishing the two mechanisms. Human P450 51A1 incorporated 88 % 18O (one atom) into formic acid, consistent with a major but not exclusive FeO2− mechanism. Two P450 51 orthologs from amoeba and yeast showed similar results, while two orthologs from pathogenic trypanosomes showed roughly equal contributions of both …

Fred Guengerich

Fred Guengerich

Vanderbilt University

Journal of Biological Chemistry

Ninety-eight semesters of cytochrome P450 enzymes and related topics—What have I taught and learned?

This Reflection article begins with my family background and traces my career through elementary and high school, followed by time at the University of Illinois, Vanderbilt University, the University of Michigan, and then for 98 semesters as a Vanderbilt University faculty member. My research career has dealt with aspects of cytochrome P450 enzymes, and the basic biochemistry has had applications in fields as diverse as drug metabolism, toxicology, medicinal chemistry, pharmacogenetics, biological engineering, and bioremediation. I am grateful for the opportunity to work with the Journal of Biological Chemistry not only as an author but also for 34 years as an Editorial Board Member, Associate Editor, Deputy Editor, and interim Editor-in-Chief. Thanks are extended to my family and my mentors, particularly Profs. Harry Broquist and Minor J. Coon, and the more than 170 people who have trained with me. I have …

Fred Guengerich

Fred Guengerich

Vanderbilt University

ACS catalysis

Oxygen-18 Labeling Defines a Ferric Peroxide (Compound 0) Mechanism in the Oxidative Deformylation of Aldehydes by Cytochrome P450 2B4

Most cytochrome P450 (P450) oxidations are considered to occur with the active oxidant being a perferryl oxygen (FeO3+, Compound I). However, a ferric peroxide (FeO2̅, Compound 0) mechanism has been proposed, as well, particularly for aldehyde substrates. We investigated three of these systems, the oxidative deformylation of the model substrates citronellal, 2-phenylpropionaldehyde, and 2-methyl-2-phenylpropionaldehyde by rabbit P450 2B4, using 18O labeling. The formic acid product contained one 18O derived from 18O2, which is indicative of a dominant Compound 0 mechanism. The formic acid also contained only one 18O derived from H218O, which ruled out a Compound I mechanism. The possibility of a Baeyer–Villiger reaction was examined by using synthesized possible intermediates, but our data do not support its presence. Overall, these findings unambiguously demonstrate the role of the …

Fred Guengerich

Fred Guengerich

Vanderbilt University

Principles of Xenobiotic Metabolism (Biotransformation)

This chapter provides a general overview of metabolic reactions and their significance. Basic concepts and terminology related to biotransformation, activity, and toxicityToxicity are explained and discussed. Major enzymes involved in oxidationOxidation, reductionReduction, hydrolytic, and conjugationConjugation are covered including enzyme nomenclature, localization, catalytic cycle, coenzymes, relevance of individual enzymes, types of reactions, substrates and metabolites, influence of metabolic reactions on the activity/toxicity of xenobiotics, enzyme inhibition, and relevance if applicable.

Fred Guengerich

Fred Guengerich

Vanderbilt University

Journal of Biological Chemistry

The multistep oxidation of cholesterol to pregnenolone by human cytochrome P450 11A1 is highly processive

Cytochrome P450 (P450, CYP) 11A1 is the classical cholesterol side chain cleavage enzyme (P450scc) that removes six carbons of the side chain, the first and rate-limiting step in the synthesis of all mammalian steroids. The reaction is a 3-step, 6-electron oxidation that proceeds via formation of 22R-hydroxy (OH) and 20R,22R-(OH)2 cholesterol, yielding pregnenolone. We expressed human P450 11A1 in bacteria, purified the enzyme in the absence of nonionic detergents, and assayed pregnenolone formation by HPLC-mass spectrometry of the dansyl hydrazone. The reaction was inhibited by the nonionic detergent Tween 20, and several lipids did not enhance enzymatic activity. The 22R-OH and 20R,22R-(OH)2 cholesterol intermediates were bound to P450 11A1 relatively tightly, as judged by steady-state optical titrations and koff rates. The electron donor adrenodoxin had little effect on binding; the substrate …

2023/11/24

Article Details
Fred Guengerich

Fred Guengerich

Vanderbilt University

Journal of Biological Chemistry

Processive kinetics in the three-step lanosterol 14α-demethylation reaction catalyzed by human cytochrome P450 51A1

Cytochrome P450 (P450, CYP) family 51 enzymes catalyze the 14α-demethylation of sterols, leading to critical products used for membranes and the production of steroids, as well as signaling molecules. In mammals, P450 51 catalyzes the 3-step, 6-electron oxidation of lanosterol to form (4β,5α)-4,4-dimethyl-cholestra-8,14,24-trien-3-ol (FF-MAS). P450 51A1 can also use 24,25-dihydrolanosterol (a natural substrate in the Kandutsch-Russell cholesterol pathway). 24,25-Dihydrolanosterol and the corresponding P450 51A1 reaction intermediates, the 14α-alcohol and -aldehyde derivatives of dihydrolanosterol, were synthesized to study the kinetic processivity of the overall 14α-demethylation reaction of human P450 51A1. A combination of steady-state kinetic parameters, steady-state binding constants, dissociation rates of P450-sterol complexes, and kinetic modeling of the time course of oxidation of a P450 …

Fred Guengerich

Fred Guengerich

Vanderbilt University

Nucleic Acids Research

Basis for the discrimination of supercoil handedness during DNA cleavage by human and bacterial type II topoisomerases

To perform double-stranded DNA passage, type II topoisomerases generate a covalent enzyme-cleaved DNA complex (i.e. cleavage complex). Although this complex is a requisite enzyme intermediate, it is also intrinsically dangerous to genomic stability. Consequently, cleavage complexes are the targets for several clinically relevant anticancer and antibacterial drugs. Human topoisomerase IIα and IIβ and bacterial gyrase maintain higher levels of cleavage complexes with negatively supercoiled over positively supercoiled DNA substrates. Conversely, bacterial topoisomerase IV is less able to distinguish DNA supercoil handedness. Despite the importance of supercoil geometry to the activities of type II topoisomerases, the basis for supercoil handedness recognition during DNA cleavage has not been characterized. Based on the results of benchtop and rapid-quench flow kinetics experiments, the forward …

Fred Guengerich

Fred Guengerich

Vanderbilt University

Xenobiotica

The influence of temperature on the metabolic activity of CYP2C9, CYP2C19, and CYP3A4 genetic variants in vitro

1. Temperature is considered to affect the activity of drug-metabolizing enzymes; however, no previous studies have compared temperature dependency among cytochrome P450 genetic variants. This study aimed to analyse warfarin 7-hydroxylation by CYP2C9 variants; omeprazole 5-hydroxylation by CYP2C19 variants; and midazolam 1-hydroxylation by CYP3A4 variants at 34 °C, 37 °C, and 40 °C.2. Compared with that seen at 37 °C, the intrinsic clearance rates (Vmax/Km) of CYP2C9.1 and .2 were decreased (76 ∼ 82%), while that of CYP2C9.3 was unchanged at 34 °C. At 40 °C, CYP2C9.1, .2, and .3 exhibited increased (121%), unchanged and decreased (87%) intrinsic clearance rates, respectively. At 34 °C, the clearance rates of CYP2C19.1A and .10 were decreased (71 ∼ 86%), that of CYP2C19.1B was unchanged, and those of CYP2C19.8 and .23 were increased (130 ∼ 134%). At 40 …

Fred Guengerich

Fred Guengerich

Vanderbilt University

Food and Chemical Toxicology

FEMA GRAS assessment of natural flavor complexes: Lemongrass oil, chamomile oils, citronella oil and related flavoring ingredients

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a program for the re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavor ingredients. This publication, eleventh in the series, evaluates the safety of NFCs characterized by primary alcohol, aldehyde, carboxylic acid, ester and lactone constituents derived from terpenoid biosynthetic pathways and/or lipid metabolism. The scientific-based evaluation procedure published in 2005 and updated in 2018 that relies on a complete constituent characterization of the NFC and organization of the constituents into congeneric groups. The safety of the NFCs is evaluated using the threshold of toxicological concern (TTC) concept in addition to data on estimated intake, metabolism and toxicology of members of the congeneric groups and for the NFC under evaluation. The scope of the safety evaluation …

Dibyendu Mallick

Dibyendu Mallick

Presidency University

Organic Letters

Dominating Antiaromatic Character of as-Indacene Decides Overall Properties of a Formally Aromatic Dicyclopenta[c]fluorenothiophene

Dicyclopenta[c]fluorenothiophene 5 was synthesized as the isoelectronic polycyclic heteroarene analogue of an as-indacenodifluorene with a (4n + 2)π-electron perimeter. Single-crystal and 1H NMR analyses indicated a quinoidal ground state for 5, which was supported by theoretical calculations while suggesting a degree of antiaromaticity of the as-indacene subunit greater than that for s-indacenodifluorene 3. The dominant antiaromaticity for 5 was evidenced by the broad weakly intense absorption tail reaching the near-IR region, four-stage redox amphotericity, and small HOMO–LUMO energy gap.

Fred Guengerich

Fred Guengerich

Vanderbilt University

Food and Chemical Toxicology

FEMA GRAS assessment of derivatives of basil, nutmeg, parsley, tarragon and related allylalkoxybenzene-containing natural flavor complexes

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a program for the re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavoring ingredients in food. In this publication, tenth in the series, NFCs containing a high percentage of at least one naturally occurring allylalkoxybenzene constituent with a suspected concern for genotoxicity and/or carcinogenicity are evaluated. In a related paper, ninth in the series, NFCs containing anethole and/or eugenol and relatively low percentages of these allylalkoxybenzenes are evaluated. The Panel applies the threshold of toxicological concern (TTC) concept and evaluates relevant toxicology data on the NFCs and their respective constituent congeneric groups. For NFCs containing allylalkoxybenzene constituent(s), the estimated intake of the constituent is compared to the TTC for compounds with structural …

Dibyendu Mallick

Dibyendu Mallick

Presidency University

The Journal of Organic Chemistry

Dibenzoheterole-Fused s-Indacenes

Heterole (pyrrole, thiophene, furan, thiophene-S,S-dioxide)-fused s-indacenes are known for their enhanced paratropic ring-current strength. However, the outcome of the antiaromatic properties for dibenzoheterole-fused s-indacene antiaromatics remained underexplored. Carbazole-, dibenzothiophene-, dibenzofuran-, and dibenzo[b,d]thiophene-5,5-dioxide-fused s-indacenes 1–4, respectively, were synthesized and characterized by experimental (NMR, single-crystal, UV–vis, CV) and computational (DFT) approaches to study the ground-state antiaromatic properties. Sulfone-containing 4 showed the weakest paratropic ring-current strength for the s-indacene unit, while 1–3 showed a relatively greater paratropicity for the s-indacene unit, as evidenced by the changes in 1H NMR chemical shifts of s-indacene protons. Such observation was explained by the electron-withdrawing effect of the sulfone group and loss …

Fred Guengerich

Fred Guengerich

Vanderbilt University

International Journal of Molecular Sciences

Identification of Three Human POLH Germline Variants Defective in Complementing the UV-and Cisplatin-Sensitivity of POLH-Deficient Cells

DNA polymerase (pol) η is responsible for error-free translesion DNA synthesis (TLS) opposite ultraviolet light (UV)-induced cis-syn cyclobutane thymine dimers (CTDs) and cisplatin-induced intrastrand guanine crosslinks. POLH deficiency causes one form of the skin cancer-prone disease xeroderma pigmentosum variant (XPV) and cisplatin sensitivity, but the functional impacts of its germline variants remain unclear. We evaluated the functional properties of eight human POLH germline in silico-predicted deleterious missense variants, using biochemical and cell-based assays. In enzymatic assays, utilizing recombinant pol η (residues 1—432) proteins, the C34W, I147N, and R167Q variants showed 4- to 14-fold and 3- to 5-fold decreases in specificity constants (kcat/Km) for dATP insertion opposite the 3’-T and 5′-T of a CTD, respectively, compared to the wild-type, while the other variants displayed 2- to 4-fold increases. A CRISPR/Cas9-mediated POLH knockout increased the sensitivity of human embryonic kidney 293 cells to UV and cisplatin, which was fully reversed by ectopic expression of wild-type pol η, but not by that of an inactive (D115A/E116A) or either of two XPV-pathogenic (R93P and G263V) mutants. Ectopic expression of the C34W, I147N, and R167Q variants, unlike the other variants, did not rescue the UV- and cisplatin-sensitivity in POLH-knockout cells. Our results indicate that the C34W, I147N, and R167Q variants—substantially reduced in TLS activity—failed to rescue the UV- and cisplatin-sensitive phenotype of POLH-deficient cells, which also raises the possibility that such hypoactive germline POLH variants may …

Other articles from Journal of Natural Products journal

Mingxun Wang

Mingxun Wang

University of California, San Diego

Journal of Natural Products

A MassQL-Integrated Molecular Networking Approach for the Discovery and Substructure Annotation of Bioactive Cyclic Peptides

The marine sponge-derived fungus Stachylidium bicolor 293 K04 is a prolific producer of specialized metabolites, including certain cyclic tetrapeptides called endolides, which are characterized by the presence of the unusual amino acid N-methyl-3-(3-furyl)-alanine. This rare feature can be used as bait to detect new endolide-like analogs through customized fragment pattern searches of tandem mass spectrometry data using the Mass Spec Query Language (MassQL). Here, we integrate endolide-specific MassQL queries with molecular networking to obtain substructural information guiding the targeted isolation and structure elucidation of the new proline-containing endolides E (1) and F (2). We showed that endolide F (but not E) is a moderate antagonist of the arginine vasopressin V1A receptor, a member of the G protein-coupled receptor superfamily.

William Gerwick

William Gerwick

University of California, San Diego

Journal of Natural Products

PECAN Predicts Patterns of Cancer Cell Cytostatic Activity of Natural Products Using Deep Learning

Many machine learning techniques are used as drug discovery tools with the intent to speed characterization by determining relationships between compound structure and biological function. However, particularly in anticancer drug discovery, these models often make only binary decisions about the biological activity for a narrow scope of drug targets. We present a feed-forward neural network, PECAN (Prediction Engine for the Cytostatic Activity of Natural product-like compounds), that simultaneously classifies the potential antiproliferative activity of compounds against 59 cancer cell lines. It predicts the activity to be one of six categories, indicating not only if activity is present but the degree of activity. Using an independent subset of NCI data as a test set, we show that PECAN can reach 60.1% accuracy in a six-way classification and present further evidence that it classifies based on useful structural features of …

Lucas Apolinário Chibli

Lucas Apolinário Chibli

Universidade de São Paulo

Journal of Natural Products

Toward a More Sustainable Sample Preparation in Phytochemistry: Case Studies in Four Subclasses of Alkaloids

The fact that alkaloids are bases has been the most explored chemical feature of their extraction and purification procedures. The main drawback of these procedures is that they employ undesirable chemicals, with HCl and CH2Cl2 probably being the most commonly employed chemicals in their subsequent steps. This work tested the hypothesis that advantages in recovery efficiency support this common practice. Experiments were conducted in three laboratories, monitoring the alkaloids harmine (1), boldine (2), vincamine (3), and mescaline (4) extracted from Banisteriopsis caapi, Peumus boldus, Vinca minor, and Trichocereus macrogonus var. pachanoi, respectively. The research demonstrated that HCl could be replaced with citric acid (CA) without loss or even better extraction performance. The recommended EtOAc could completely replace CH2Cl2 in three out of four study cases and partially in the fourth …

Joanna Saguti Said

Joanna Saguti Said

Göteborgs universitet

Journal of Natural Products

Antiviral Rotenoids and Isoflavones Isolated from Millettia oblata ssp. teitensis

Three new (1–3) and six known rotenoids (5–10), along with three known isoflavones (11–13), were isolated from the leaves of Millettia oblata ssp. teitensis. A new glycosylated isoflavone (4), four known isoflavones (14–18), and one known chalcone (19) were isolated from the root wood extract of the same plant. The structures were elucidated by NMR and mass spectrometric analyses. The absolute configuration of the chiral compounds was established by a comparison of experimental ECD and VCD data with those calculated for the possible stereoisomers. This is the first report on the use of VCD to assign the absolute configuration of rotenoids. The crude leaves and root wood extracts displayed anti-RSV (human respiratory syncytial virus) activity with IC50 values of 0.7 and 3.4 μg/mL, respectively. Compounds 6, 8, 10, 11, and 14 showed anti-RSV activity with IC50 values of 0.4–10 μM, while compound 3 …

Maurizio Bruno

Maurizio Bruno

Università degli Studi di Palermo

Journal of Natural Products

Glucose Uptake-Stimulating Metabolites from Aerial Parts of Centaurea sicula

A comprehensive phytochemical investigation of aerial parts obtained from Centaurea sicula L. led to the isolation of 14 terpenoids (1–14) and nine polyphenols (15–23). The sesquiterpenoid group (1–11) included three structural families, namely, elemanolides (1–6), eudesmanolides (7 and 8), and germacranolides (9–11) with four unreported secondary metabolites (5–8), whose structure has been determined by extensive spectroscopic analysis, including 1D/2D NMR, HR-MS, and chemical conversion. Moreover, an unprecedented alkaloid, named siculamide (24), was structurally characterized, and a possible biogenetic origin was postulated. Inspired by the traditional use of the plant and in the frame of ongoing research on compounds with potential activity on metabolic syndrome, all the isolated compounds were evaluated for their stimulation of glucose uptake, disclosing remarkable activity for dihydrocnicin …

valeria costantino

valeria costantino

Università degli Studi di Napoli Federico II

Journal of Natural Products

When Synthesis Gets It Wrong: Unexpected Epimerization Using PyBOP in the Synthesis of the Cyclic Peptide Thermoactinoamide A

Chemical synthesis is commonly seen as the final proof of the structure of complex natural products, but even a seemingly easy and well-established synthetic procedure may lead to an unexpected result. This is what happened with the synthesis of thermoactinoamide A (1a), an antimicrobial and antitumor nonribosomal cyclic hexapeptide produced by the thermophilic bacterium Thermoactinomyces vulgaris. The synthetic thermoactinoamide A outsourced to a company and the one described in a synthetic paper showed spectroscopic data identical to each other but different from those of the natural product. After a detailed spectroscopic, degradative, and synthetic study, the synthetic compound was shown to be an epimer (1b) of the intended target compound, originating during the cyclization reaction by extensive epimerization at the activated C-terminal amino acid. This allowed confirmation of the structure of the …

Shan He

Shan He

Ningbo University

Journal of Natural Products

Irpetones A and B, Anti-Osteoclastic Heptaketides from a Marine Mesophotic Zone Ircinia Sponge-Associated Fungus Irpex sp. NBUF088

Chemical investigation of Irpex sp. NBUF088, associated with an Ircinia sp. sponge located at an 84 m deep mesophotic zone, led to the discovery of two new heptaketides, named irpetones A (1) and B (2). Their structures were identified by analysis of spectroscopic data and quantum-chemical calculations. Compound 1 exhibited inhibition against the receptor activator of NF-κB ligand-induced osteoclastogenesis in bone marrow monocytes with an IC50 of 6.3 ± 0.2 μM, causing no notable cytotoxicity. It was also determined that 1 inhibited the phosphorylation of ERK1/2-JNK1/2-p38 MAPKs and the nuclear translocation of NF-κB, consequently suppressing the activation of MAPK and NF-κB signaling pathways induced by the NF-κB ligand.

Margaret Anne Brimble

Margaret Anne Brimble

University of Auckland

Journal of Natural Products

Synthesis, Structure–Activity Relationship Study, Bioactivity, and Nephrotoxicity Evaluation of the Proposed Structure of the Cyclic Lipodepsipeptide Brevicidine B

The brevicidines represent a novel class of nonribosomal antimicrobial peptides that possess remarkable potency and selectivity toward highly problematic and resistant Gram-negative pathogenic bacteria. A recently discovered member of the brevicidine family, coined brevicidine B (2), comprises a single amino acid substitution (from d-Tyr2 to d-Phe2) in the amino acid sequence of the linear moiety of brevicidine (1) and was reported to exhibit broader antimicrobial activity against both Gram-negative (MIC = 2–4 μgmL–1) and Gram-positive (MIC = 2–8 μgmL–1) pathogens. Encouraged by this, we herein report the first total synthesis of the proposed structure of brevicidine B (2), building on our previously reported synthetic strategy to access brevicidine (1). In agreement with the original isolation paper, pleasingly, synthetic 2 demonstrated antimicrobial activity toward Escherichia coli, Pseudomonas aeruginosa …

Laurence Jennings

Laurence Jennings

National University of Ireland, Galway

Journal of Natural Products

Highly Concentrated Linear Guanidine Amides from the Marine Sipunculid Phascolosoma granulatum

The chemical diversity of annelids, particularly those belonging to the class Sipuncula, remains largely unexplored. However, as part of a Marine Biodiscovery program in Ireland, the peanut worm Phascolosoma granulatum emerged as a promising source of unique metabolites. The purification of the MeOH/CH2Cl2 extract of this species led to the isolation of six new linear guanidine amides, named phascolosomines A–F (1–6). NMR analysis allowed for the elucidation of their structures, all of which feature a terminal guanidine, central amide linkage, and a terminal isobutyl group. Notably, these guanidine amides were present in unusually high concentrations, comprising ∼3% of the dry mass of the organism. The primary concentration of the phascolosomines in the viscera is similar to that previously identified in linear amides from sipunculid worms and marine fireworms. The compounds from sipunculid worms …

Tomas Bergström

Tomas Bergström

Göteborgs universitet

Journal of Natural Products

Antiviral Rotenoids and Isoflavones Isolated from Millettia oblata ssp. teitensis

Three new (1–3) and six known rotenoids (5–10), along with three known isoflavones (11–13), were isolated from the leaves of Millettia oblata ssp. teitensis. A new glycosylated isoflavone (4), four known isoflavones (14–18), and one known chalcone (19) were isolated from the root wood extract of the same plant. The structures were elucidated by NMR and mass spectrometric analyses. The absolute configuration of the chiral compounds was established by a comparison of experimental ECD and VCD data with those calculated for the possible stereoisomers. This is the first report on the use of VCD to assign the absolute configuration of rotenoids. The crude leaves and root wood extracts displayed anti-RSV (human respiratory syncytial virus) activity with IC50 values of 0.7 and 3.4 μg/mL, respectively. Compounds 6, 8, 10, 11, and 14 showed anti-RSV activity with IC50 values of 0.4–10 μM, while compound 3 …

Tilmann Weber

Tilmann Weber

Danmarks Tekniske Universitet

Journal of Natural Products

Pepticinnamins N, O, and P, Nonribosomal Peptides from the Soil-Derived Streptomyces mirabilis P8-A2

Cinnamoyl moiety containing nonribosomal peptides represented by pepticinnamin E are a growing family of natural products isolated from different Streptomyces species and possess diverse bioactivities. The soil bacterium Streptomyces mirabilis P8-A2 harbors a cryptic pepticinnamin biosynthetic gene cluster, producing azodyrecins as major products. Inactivation of the azodyrecin biosynthetic gene cluster by CRISPR-BEST base editing led to the activation and production of pepticinnamin E (1) and its analogues, pepticinnamins N, O, and P (2–4), the structures of which were determined by detailed NMR spectroscopy, HRMS data, and Marfey’s reactions. These new compounds did not show a growth inhibitory effect against the LNCaP and C4-2B prostate cancer lines, respectively.

Aditi Das, Ph.D.

Aditi Das, Ph.D.

University of Illinois at Urbana-Champaign

Journal of Natural Products

Elucidating the Mechanism of Metabolism of Cannabichromene by Human Cytochrome P450s

Cannabichromene (CBC) is a nonpsychoactive phytocannabinoid well-known for its wide-ranging health advantages. However, there is limited knowledge regarding its human metabolism following CBC consumption. This research aimed to explore the metabolic pathways of CBC by various human liver cytochrome P450 (CYP) enzymes and support the outcomes using in vivo data from mice. The results unveiled two principal CBC metabolites generated by CYPs: 8′-hydroxy-CBC and 6′,7′-epoxy-CBC, along with a minor quantity of 1″-hydroxy-CBC. Notably, among the examined CYPs, CYP2C9 demonstrated the highest efficiency in producing these metabolites. Moreover, through a molecular dynamics simulation spanning 1 μs, it was observed that CBC attains stability at the active site of CYP2J2 by forming hydrogen bonds with I487 and N379, facilitated by water molecules, which specifically promotes …

Kevin Tidgewell

Kevin Tidgewell

Duquesne University

Journal of Natural Products

Outlining the Hidden Curriculum: Perspectives on Successfully Navigating Scientific Conferences

Scientific conferences and meetings are valuable opportunities for researchers to network, communicate, and develop knowledge. For early career scientists, conferences can also be intimidating, confusing, and overwhelming, especially without having adequate preparation or experience. In this Perspective, we provide advice based on previous experiences navigating scientific meetings and conferences. These guidelines outline parts of the hidden curriculum around preparing for and attending meetings, navigating conference sessions, networking with other scientists, and participating in social activities while upholding a recommended code of conduct.

Felipe Moura A. da Silva

Felipe Moura A. da Silva

Universidade Federal do Amazonas

Journal of Natural Products

Pleonotoquinones, Cytotoxic Oxepinenaphthoquinones from Pleonotoma jasminifolia

Two unusual naphthoquinones, named here as pleonotoquinones A (1) and B (2), were isolated along with two known anthraquinones (3 and 4) via chromatographic separations of an ethyl acetate extract of the roots of Pleonotoma jasminifolia. Compounds 1 and 2 are the first examples of quinones bearing a 2-methyloxepine moiety. The compounds were isolated with the aid of mass spectrometry and molecular networking, and their structures were resolved using 1D and 2D NMR and HRESIMS data. The isolated compounds were evaluated for their antiproliferative activity against human cancer cell lines, and compounds 1 and 2 displayed cytotoxicity against human colon cancer HCT116 cells (IC50 = 2.6 μM for compound 1 and IC50 = 4.3 μM for compound 2) and human liver cancer HepG2 cells (IC50 = 1.9 μM for compound 1 and IC50 = 6.4 μM for compound 2).

Evangel Kummari

Evangel Kummari

Mississippi State University

Journal of Natural Products

Previously Uncharacterized Variants, OCF-E–OCF-J, of the Antifungal Occidiofungin Produced by Burkholderia contaminans MS14

The rise of multidrug resistant fungal infections highlights the need to identify and develop novel antifungal agents. Occidiofungin is a nonribosomally synthesized glycolipopeptide that has a unique mechanism of action, disrupting actin-mediated functions and inducing cellular apoptosis. Antifungal activity has been observed in vitro against various fungal species, including multidrug resistant Candida auris, and in vivo efficacy has been demonstrated in a murine vulvovaginal candidiasis model. Occidiofungin, a cyclic glycolipopeptide, is composed of eight amino acids and in previous studies, an asparagine residue was assigned at position 7 (ASN7). In this study, new structural variants of occidiofungin have been characterized which have aspartic acid (ASP7), glutamine (GLN7), or glutamic acid (GLU7) at position 7. The side chain of the ASP7 variant contains the only terminal carboxylic acid in the peptide and …

Patric Sadecki

Patric Sadecki

University of North Carolina at Chapel Hill

Journal of Natural Products

The Greater Celandine: Identification and Characterization of an Antimicrobial Peptide from Chelidonium majus

Chelidonium majus, known as Greater Celandine, is a latex-bearing plant that has been leveraged for its anticancer and antimicrobial properties. Herein, C. majus aerial tissue is mined for the presence of antimicrobial peptides. A highly abundant cysteine-rich peptide with a length of 25 amino acids, deemed CM-AMP1, is characterized through multiple mass spectrometric approaches. Electron-activated dissociation is leveraged to differentiate between isoleucine and leucine residues and complement conventional collision-induced dissociation to gain full sequence coverage of the full-length peptide. CM-AMP1 shares little sequence similarity with any proteins in publicly available databases, highlighting the novelty of its cysteine landscape and core motif. The presence of three disulfide bonds in the native peptide confers proteolytic stability, and antimicrobial activity is greatly decreased upon the alkylation of the …

Olivier P. Thomas

Olivier P. Thomas

National University of Ireland, Galway

Journal of Natural Products

Highly Concentrated Linear Guanidine Amides from the Marine Sipunculid Phascolosoma granulatum

The chemical diversity of annelids, particularly those belonging to the class Sipuncula, remains largely unexplored. However, as part of a Marine Biodiscovery program in Ireland, the peanut worm Phascolosoma granulatum emerged as a promising source of unique metabolites. The purification of the MeOH/CH2Cl2 extract of this species led to the isolation of six new linear guanidine amides, named phascolosomines A–F (1–6). NMR analysis allowed for the elucidation of their structures, all of which feature a terminal guanidine, central amide linkage, and a terminal isobutyl group. Notably, these guanidine amides were present in unusually high concentrations, comprising ∼3% of the dry mass of the organism. The primary concentration of the phascolosomines in the viscera is similar to that previously identified in linear amides from sipunculid worms and marine fireworms. The compounds from sipunculid worms …

Steven P Miller

Steven P Miller

University of Toronto

Journal of Natural Products

Transient Receptor Potential Melastatin 7 (TRPM7) Ion Channel Inhibitors: Preliminary SAR and Conformational Studies of Xenicane Diterpenoids from the Hawaiian Soft Coral …

Waixenicin A, a xenicane diterpene from the octocoral Sarcothelia edmondsoni, is a selective, potent inhibitor of the TRPM7 ion channel. To study the structure–activity relationship (SAR) of waixenicin A, we isolated and assayed related diterpenes from S. edmondsoni. In addition to known waixenicins A (1) and B (2), we purified six xenicane diterpenes, 7S,8S-epoxywaixenicins A (3) and B (4), 12-deacetylwaixenicin A (5), waixenicin E (6), waixenicin F (7), and 20-acetoxyxeniafaraunol B (8). We elucidated the structures of 3–8 by NMR and MS analyses. Compounds 1, 2, 3, 4, and 6 inhibited TRPM7 activity in a cell-based assay, while 5, 7, and 8 were inactive. A preliminary SAR emerged showing that alterations to the nine-membered ring of 1 did not reduce activity, while the 12-acetoxy group, in combination with the dihydropyran, appears to be necessary for TRPM7 inhibition. The bioactive compounds are …

C. Benjamin Naman

C. Benjamin Naman

Ningbo University

Journal of Natural Products

Irpetones A and B, Anti-Osteoclastic Heptaketides from a Marine Mesophotic Zone Ircinia Sponge-Associated Fungus Irpex sp. NBUF088

Chemical investigation of Irpex sp. NBUF088, associated with an Ircinia sp. sponge located at an 84 m deep mesophotic zone, led to the discovery of two new heptaketides, named irpetones A (1) and B (2). Their structures were identified by analysis of spectroscopic data and quantum-chemical calculations. Compound 1 exhibited inhibition against the receptor activator of NF-κB ligand-induced osteoclastogenesis in bone marrow monocytes with an IC50 of 6.3 ± 0.2 μM, causing no notable cytotoxicity. It was also determined that 1 inhibited the phosphorylation of ERK1/2-JNK1/2-p38 MAPKs and the nuclear translocation of NF-κB, consequently suppressing the activation of MAPK and NF-κB signaling pathways induced by the NF-κB ligand.

Hang Ma

Hang Ma

University of Rhode Island

Journal of Natural Products

Anti-Ferroptotic Effect of Cannabidiol in Human Skin Keratinocytes Characterized by Data-Independent Acquisition-Based Proteomics

Skin cells are susceptible to oxidative stress and various types of cell death, including an iron-dependent form known as ferroptosis. Cannabidiol (CBD) can protect skin cells against oxidative stress, but whether this is attributed to the inhibition of ferroptosis is unknown. Herein, we evaluated the anti-ferroptotic effect of CBD in human keratinocytes using biochemical assays (radical scavenging and iron chelating) and cell-based models (for lipid peroxidation and intracellular iron). CBD’s anti-ferroptotic effect was further characterized by proteomic analysis. This study identifies anti-ferroptosis as a mechanism of CBD’s skin protective effects.