On ‘Evidence for the participation of cytochrome b5 in hepatic microsomal mixed-function oxidation reactions’ by Alfred Hildebrandt and Ronald W. Estabrook

Archives of Biochemistry and Biophysics

Published On 2022/9/15

This paper by Alfred G. Hildebrandt and Ronald W. Estabrook at the University of Texas (Southwestern) Medical School, led to the concept of cytochrome b5 (b5) as an auxiliary protein facilitating some cytochrome P450 (P450) reactions in the liver and other tissues. The gist of the paper is that DPNH (now known as NADH) enhanced rates of TPNH (now NADPH)-supported N-demethylation of O-ethylmorphine in rat liver microsomes. The conclusion was that b5 was providing an electron to the ferrous-oxy form of P450 (Fe2+O2), which was supported by some spectral observations on the oxidation state of b5 in the microsomes in the steady state. This observation led to a flurry of activity, which is still in progress. This paper has been cited 678 times in Google (558 in Clarivate), and I have often cited it myself. A PubMed search for the terms P450 and b5 yielded 2244 results.

Journal

Archives of Biochemistry and Biophysics

Published On

2022/9/15

Volume

726

Page

109177

Authors

Fred Guengerich

Fred Guengerich

Vanderbilt University

Position

Professor of Biochemistry

H-Index(all)

175

H-Index(since 2020)

51

I-10 Index(all)

0

I-10 Index(since 2020)

0

Citation(all)

0

Citation(since 2020)

0

Cited By

0

Research Interests

Enzymology

drug metabolism

cytochrome P450

mutagenesis

University Profile Page

Other Articles from authors

Fred Guengerich

Fred Guengerich

Vanderbilt University

Journal of Medicinal Chemistry

Identification of Potent and Selective Inhibitors of Acanthamoeba: Structural Insights into Sterol 14α-Demethylase as a Key Drug Target

Fat mass obesity-associated protein (FTO) is a DNA/RNA demethylase involved in the epigenetic regulation of various genes and is considered a therapeutic target for obesity, cancer, and neurological disorders. Here, we aimed to design novel FTO-selective inhibitors by merging fragments of previously reported FTO inhibitors. Among the synthesized analogues, compound 11b, which merges key fragments of Hz (3) and MA (4), inhibited FTO selectively over alkylation repair homologue 5 (ALKBH5), another DNA/RNA demethylase. Treatment of acute monocytic leukemia NOMO-1 cells with a prodrug of 11b decreased the viability of acute monocytic leukemia cells, increased the level of the FTO substrate N6-methyladenosine in mRNA, and induced upregulation of MYC and downregulation of RARA, which are FTO target genes. Thus, Hz (3)/MA (4) hybrid analogues represent an entry into a new class of FTO …

Fred Guengerich

Fred Guengerich

Vanderbilt University

Chemical Research in Toxicology

In Vivo and In Vitro Induction of Cytochrome P450 3A4 by Thalidomide in Humanized-Liver Mice and Experimental Human Hepatocyte HepaSH cells

Autoinduction of cytochrome P450 (P450) 3A4-mediated metabolism of thalidomide was investigated in humanized-liver mice and human hepatocyte-derived HepaSH cells. The mean plasma ratios of 5-hydroxythalidomide and glutathione adducts to thalidomide were significantly induced (3.5- and 6.0-fold, respectively) by thalidomide treatment daily at 1000 mg/kg for 3 days and measured at 2 h after the fourth administration (on day 4). 5-Hydroxythalidomide was metabolically activated by P450 3A4 in HepaSH cells pretreated with 300 and 1000 μM thalidomide, and 5,6-dihydroxythalidomide was detected. Significant induction of P450 3A4 mRNA expression (4.1-fold) in the livers of thalidomide-treated mice occurred. Thalidomide exerts a variety of actions through multiple mechanisms following bioactivation by induced human P450 3A enzymes.

Fred Guengerich

Fred Guengerich

Vanderbilt University

Journal of Biological Chemistry

Proteomics, modeling, and fluorescence assays delineate cytochrome b5 residues involved in binding and stimulation of cytochrome P450 17A1 17, 20-lyase

Cytochrome b5 (b5) is known to stimulate some catalytic activities of cytochrome P450 (P450, CYP) enzymes, although mechanisms still need to be defined. The reactions most strongly enhanced by b5 are the 17,20-lyase reactions of P450 17A1 involved in steroid biosynthesis. We had previously used a fluorescently labeled human b5 variant (Alexa 488-T70C-b5) to characterize human P450 17A1-b5 interactions, but subsequent proteomic analyses indicated that lysines in b5 were also modified with Alexa 488 maleimide in addition to Cys-70, due to disulfide dimerization of the T70C mutant. A series of b5 variants were constructed with Cys replacements for the identified lysine residues and labeled with the dye. Fluorescence attenuation and the function of b5 in the steroid lyase reaction depended on the modified position. Apo-b5 (devoid of heme group) studies revealed the lack of involvement of the b5 heme in …

Fred Guengerich

Fred Guengerich

Vanderbilt University

Angewandte Chemie

Oxygen‐18 Labeling Reveals a Mixed Fe− O Mechanism in the Last Step of Cytochrome P450 51 Sterol 14α‐Demethylation

The 14α‐demethylation step is critical in eukaryotic sterol biosynthesis, catalyzed by cytochrome P450 (P450) Family 51 enzymes, for example, with lanosterol in mammals. This conserved three‐step reaction terminates in a C−C cleavage step that generates formic acid, the nature of which has been controversial. Proposed mechanisms involve roles of P450 Compound 0 (ferric peroxide anion, FeO2−) or Compound I (perferryl oxygen, FeO3+) reacting with either the aldehyde or its hydrate, respectively. Analysis of 18O incorporation into formic acid from 18O2 provides a means of distinguishing the two mechanisms. Human P450 51A1 incorporated 88 % 18O (one atom) into formic acid, consistent with a major but not exclusive FeO2− mechanism. Two P450 51 orthologs from amoeba and yeast showed similar results, while two orthologs from pathogenic trypanosomes showed roughly equal contributions of both …

Fred Guengerich

Fred Guengerich

Vanderbilt University

Journal of Biological Chemistry

Ninety-eight semesters of cytochrome P450 enzymes and related topics—What have I taught and learned?

This Reflection article begins with my family background and traces my career through elementary and high school, followed by time at the University of Illinois, Vanderbilt University, the University of Michigan, and then for 98 semesters as a Vanderbilt University faculty member. My research career has dealt with aspects of cytochrome P450 enzymes, and the basic biochemistry has had applications in fields as diverse as drug metabolism, toxicology, medicinal chemistry, pharmacogenetics, biological engineering, and bioremediation. I am grateful for the opportunity to work with the Journal of Biological Chemistry not only as an author but also for 34 years as an Editorial Board Member, Associate Editor, Deputy Editor, and interim Editor-in-Chief. Thanks are extended to my family and my mentors, particularly Profs. Harry Broquist and Minor J. Coon, and the more than 170 people who have trained with me. I have …

Fred Guengerich

Fred Guengerich

Vanderbilt University

ACS catalysis

Oxygen-18 Labeling Defines a Ferric Peroxide (Compound 0) Mechanism in the Oxidative Deformylation of Aldehydes by Cytochrome P450 2B4

Most cytochrome P450 (P450) oxidations are considered to occur with the active oxidant being a perferryl oxygen (FeO3+, Compound I). However, a ferric peroxide (FeO2̅, Compound 0) mechanism has been proposed, as well, particularly for aldehyde substrates. We investigated three of these systems, the oxidative deformylation of the model substrates citronellal, 2-phenylpropionaldehyde, and 2-methyl-2-phenylpropionaldehyde by rabbit P450 2B4, using 18O labeling. The formic acid product contained one 18O derived from 18O2, which is indicative of a dominant Compound 0 mechanism. The formic acid also contained only one 18O derived from H218O, which ruled out a Compound I mechanism. The possibility of a Baeyer–Villiger reaction was examined by using synthesized possible intermediates, but our data do not support its presence. Overall, these findings unambiguously demonstrate the role of the …

Fred Guengerich

Fred Guengerich

Vanderbilt University

Principles of Xenobiotic Metabolism (Biotransformation)

This chapter provides a general overview of metabolic reactions and their significance. Basic concepts and terminology related to biotransformation, activity, and toxicityToxicity are explained and discussed. Major enzymes involved in oxidationOxidation, reductionReduction, hydrolytic, and conjugationConjugation are covered including enzyme nomenclature, localization, catalytic cycle, coenzymes, relevance of individual enzymes, types of reactions, substrates and metabolites, influence of metabolic reactions on the activity/toxicity of xenobiotics, enzyme inhibition, and relevance if applicable.

Fred Guengerich

Fred Guengerich

Vanderbilt University

Journal of Biological Chemistry

The multistep oxidation of cholesterol to pregnenolone by human cytochrome P450 11A1 is highly processive

Cytochrome P450 (P450, CYP) 11A1 is the classical cholesterol side chain cleavage enzyme (P450scc) that removes six carbons of the side chain, the first and rate-limiting step in the synthesis of all mammalian steroids. The reaction is a 3-step, 6-electron oxidation that proceeds via formation of 22R-hydroxy (OH) and 20R,22R-(OH)2 cholesterol, yielding pregnenolone. We expressed human P450 11A1 in bacteria, purified the enzyme in the absence of nonionic detergents, and assayed pregnenolone formation by HPLC-mass spectrometry of the dansyl hydrazone. The reaction was inhibited by the nonionic detergent Tween 20, and several lipids did not enhance enzymatic activity. The 22R-OH and 20R,22R-(OH)2 cholesterol intermediates were bound to P450 11A1 relatively tightly, as judged by steady-state optical titrations and koff rates. The electron donor adrenodoxin had little effect on binding; the substrate …

2023/11/24

Article Details
Fred Guengerich

Fred Guengerich

Vanderbilt University

Journal of Biological Chemistry

Processive kinetics in the three-step lanosterol 14α-demethylation reaction catalyzed by human cytochrome P450 51A1

Cytochrome P450 (P450, CYP) family 51 enzymes catalyze the 14α-demethylation of sterols, leading to critical products used for membranes and the production of steroids, as well as signaling molecules. In mammals, P450 51 catalyzes the 3-step, 6-electron oxidation of lanosterol to form (4β,5α)-4,4-dimethyl-cholestra-8,14,24-trien-3-ol (FF-MAS). P450 51A1 can also use 24,25-dihydrolanosterol (a natural substrate in the Kandutsch-Russell cholesterol pathway). 24,25-Dihydrolanosterol and the corresponding P450 51A1 reaction intermediates, the 14α-alcohol and -aldehyde derivatives of dihydrolanosterol, were synthesized to study the kinetic processivity of the overall 14α-demethylation reaction of human P450 51A1. A combination of steady-state kinetic parameters, steady-state binding constants, dissociation rates of P450-sterol complexes, and kinetic modeling of the time course of oxidation of a P450 …

Fred Guengerich

Fred Guengerich

Vanderbilt University

Nucleic Acids Research

Basis for the discrimination of supercoil handedness during DNA cleavage by human and bacterial type II topoisomerases

To perform double-stranded DNA passage, type II topoisomerases generate a covalent enzyme-cleaved DNA complex (i.e. cleavage complex). Although this complex is a requisite enzyme intermediate, it is also intrinsically dangerous to genomic stability. Consequently, cleavage complexes are the targets for several clinically relevant anticancer and antibacterial drugs. Human topoisomerase IIα and IIβ and bacterial gyrase maintain higher levels of cleavage complexes with negatively supercoiled over positively supercoiled DNA substrates. Conversely, bacterial topoisomerase IV is less able to distinguish DNA supercoil handedness. Despite the importance of supercoil geometry to the activities of type II topoisomerases, the basis for supercoil handedness recognition during DNA cleavage has not been characterized. Based on the results of benchtop and rapid-quench flow kinetics experiments, the forward …

Fred Guengerich

Fred Guengerich

Vanderbilt University

Xenobiotica

The influence of temperature on the metabolic activity of CYP2C9, CYP2C19, and CYP3A4 genetic variants in vitro

1. Temperature is considered to affect the activity of drug-metabolizing enzymes; however, no previous studies have compared temperature dependency among cytochrome P450 genetic variants. This study aimed to analyse warfarin 7-hydroxylation by CYP2C9 variants; omeprazole 5-hydroxylation by CYP2C19 variants; and midazolam 1-hydroxylation by CYP3A4 variants at 34 °C, 37 °C, and 40 °C.2. Compared with that seen at 37 °C, the intrinsic clearance rates (Vmax/Km) of CYP2C9.1 and .2 were decreased (76 ∼ 82%), while that of CYP2C9.3 was unchanged at 34 °C. At 40 °C, CYP2C9.1, .2, and .3 exhibited increased (121%), unchanged and decreased (87%) intrinsic clearance rates, respectively. At 34 °C, the clearance rates of CYP2C19.1A and .10 were decreased (71 ∼ 86%), that of CYP2C19.1B was unchanged, and those of CYP2C19.8 and .23 were increased (130 ∼ 134%). At 40 …

Fred Guengerich

Fred Guengerich

Vanderbilt University

Food and Chemical Toxicology

FEMA GRAS assessment of natural flavor complexes: Lemongrass oil, chamomile oils, citronella oil and related flavoring ingredients

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a program for the re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavor ingredients. This publication, eleventh in the series, evaluates the safety of NFCs characterized by primary alcohol, aldehyde, carboxylic acid, ester and lactone constituents derived from terpenoid biosynthetic pathways and/or lipid metabolism. The scientific-based evaluation procedure published in 2005 and updated in 2018 that relies on a complete constituent characterization of the NFC and organization of the constituents into congeneric groups. The safety of the NFCs is evaluated using the threshold of toxicological concern (TTC) concept in addition to data on estimated intake, metabolism and toxicology of members of the congeneric groups and for the NFC under evaluation. The scope of the safety evaluation …

Fred Guengerich

Fred Guengerich

Vanderbilt University

Food and Chemical Toxicology

FEMA GRAS assessment of derivatives of basil, nutmeg, parsley, tarragon and related allylalkoxybenzene-containing natural flavor complexes

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a program for the re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavoring ingredients in food. In this publication, tenth in the series, NFCs containing a high percentage of at least one naturally occurring allylalkoxybenzene constituent with a suspected concern for genotoxicity and/or carcinogenicity are evaluated. In a related paper, ninth in the series, NFCs containing anethole and/or eugenol and relatively low percentages of these allylalkoxybenzenes are evaluated. The Panel applies the threshold of toxicological concern (TTC) concept and evaluates relevant toxicology data on the NFCs and their respective constituent congeneric groups. For NFCs containing allylalkoxybenzene constituent(s), the estimated intake of the constituent is compared to the TTC for compounds with structural …

Fred Guengerich

Fred Guengerich

Vanderbilt University

International Journal of Molecular Sciences

Identification of Three Human POLH Germline Variants Defective in Complementing the UV-and Cisplatin-Sensitivity of POLH-Deficient Cells

DNA polymerase (pol) η is responsible for error-free translesion DNA synthesis (TLS) opposite ultraviolet light (UV)-induced cis-syn cyclobutane thymine dimers (CTDs) and cisplatin-induced intrastrand guanine crosslinks. POLH deficiency causes one form of the skin cancer-prone disease xeroderma pigmentosum variant (XPV) and cisplatin sensitivity, but the functional impacts of its germline variants remain unclear. We evaluated the functional properties of eight human POLH germline in silico-predicted deleterious missense variants, using biochemical and cell-based assays. In enzymatic assays, utilizing recombinant pol η (residues 1—432) proteins, the C34W, I147N, and R167Q variants showed 4- to 14-fold and 3- to 5-fold decreases in specificity constants (kcat/Km) for dATP insertion opposite the 3’-T and 5′-T of a CTD, respectively, compared to the wild-type, while the other variants displayed 2- to 4-fold increases. A CRISPR/Cas9-mediated POLH knockout increased the sensitivity of human embryonic kidney 293 cells to UV and cisplatin, which was fully reversed by ectopic expression of wild-type pol η, but not by that of an inactive (D115A/E116A) or either of two XPV-pathogenic (R93P and G263V) mutants. Ectopic expression of the C34W, I147N, and R167Q variants, unlike the other variants, did not rescue the UV- and cisplatin-sensitivity in POLH-knockout cells. Our results indicate that the C34W, I147N, and R167Q variants—substantially reduced in TLS activity—failed to rescue the UV- and cisplatin-sensitive phenotype of POLH-deficient cells, which also raises the possibility that such hypoactive germline POLH variants may …

Fred Guengerich

Fred Guengerich

Vanderbilt University

Journal of inorganic biochemistry

Hydroxylation and lyase reactions of steroids catalyzed by mouse cytochrome P450 17A1 (Cyp17a1)

Cytochrome P450 17A1 (CYP17A1) catalyzes 17α-hydroxylation and 17,20-lyase reactions with steroid hormones. Mice contain an orthologous Cyp17a1 enzyme in the genome, and its amino acid sequence has high similarity with human CYP17A1. We purified recombinant mouse Cyp17a1 and characterized its oxidation reactions with progesterone and pregnenolone. The open reading frame of the mouse Cyp17a1 gene was inserted and successfully expressed in Escherichia coli and then purified using Ni2+-nitrilotriacetic acid (NTA) affinity column chromatography. Purified mouse Cyp17a1 displayed typical Type I binding titration spectral changes upon the addition of progesterone, 17α-OH progesterone, pregnenolone, and 17α-OH pregnenolone, with similar binding affinities to those of human CYP17A1. Catalytic activities for 17α-hydroxylation and 17,20-lyase reactions were studied using ultra-performance …

Fred Guengerich

Fred Guengerich

Vanderbilt University

The Importance of Biotransformation

Biotransformation is important in considerations of toxicity of chemicals. What begins as a well-defined compound may lead to a mixture of chemicals after it enters the body. The changes may be beneficial or detrimental. A potentially harmful chemical may be rapidly inactivated, at low doses. Conversely, an innocuous compound may be transformed into a toxic one. There are cases of both detoxication and bioactivation for the same chemical, sometimes even with the same enzyme being involved in both changes (e.g., aflatoxin B1 and cytochrome P450 3A4). A proper understanding of the chemical changes, the enzymes involved, and the kinetics of changes is needed to understand the outcomes regarding safety assessment.

Fred Guengerich

Fred Guengerich

Vanderbilt University

Drug Metabolism and Disposition

Cytochrome P450 enzymes as drug targets in human disease

Although the mention of cytochrome P450 (P450, CYP) inhibition usually brings to mind unwanted variability in pharmacokinetics, in several cases P450s are good targets for inhibition. These P450s are essential but in certain disease states it is desirable to reduce the concentrations of their products. Most of the attention to date has been with human P450s 5A1, 11A1, 11B1, 11B2, 17A1, 19A1, and 51A1. In some of those cases, there are multiple drugs in us, e.g., exemestane, letrozole, and anastrozole with P450 19A1, the steroid aromatase target in breast cancer. There are also several targets that are less developed, e. g. P450s 2A6, 8B1, 4A11, 24A1, 26A1, and 26B1.Significance Statement The selective inhibition of certain P450s that have major physiological functions has been shown to be very efficacious in certain human diseases. In several cases the search for better drugs continues.

Fred Guengerich

Fred Guengerich

Vanderbilt University

Steroid 17α-hydroxylase/17, 20-lyase (cytochrome P450 17A1)

Cytochrome P450 (P450) 17A1 plays a key role in steroidogenesis, in that this enzyme catalyzes the 17α-hydroxylation of both pregnenolone and progesterone, followed by a lyase reaction to cleave the C-20 land C-21 carbons from each steroid. The reactions are important in the production of both glucocorticoids and androgens. The enzyme is critical in humans but is also a drug target in treatment of prostate cancer. Detailed methods are described for the heterologous expression of human P450 17A1 in bacteria, purification of the recombinant enzyme, reconstitution of the enzyme system in the presence of cytochrome b5, and chromatographic procedures for sensitive analyses of reaction products. Historic assay approaches are reviewed. Some information is also provided about outstanding questions in the research field, including catalytic mechanisms and searches for selective inhibitors.

Fred Guengerich

Fred Guengerich

Vanderbilt University

Direct addition of flavors, including taste and flavor modifiers

The addition of flavorings to food and beverages provides practically unlimited opportunities for innovation, for maintaining and enhancing palatability, and is one essential element of a stable supply of nutritious consumer products. A safety evaluation by the Flavor and Extract Manufacturers Association (FEMA) Expert Panel provides a pathway for flavor producers and users to achieve regulatory authority to use for substances under the conditions of intended use as a flavoring. This chapter describes the factors that contribute to the safety assessment process that is conducted by the Expert Panel, and provides examples of specific flavorings and types of flavorings that are considered. The chapter also describes future issues and opportunities likely to be encountered within the context of the FEMA generally recognized as safe assessment of flavorings.

Other articles from Archives of Biochemistry and Biophysics journal

Wieslaw Gruszecki

Wieslaw Gruszecki

Uniwersytet Marii Curie-Sklodowskiej w Lublinie

Archives of Biochemistry and Biophysics

The presence of free palmitic acid modulates the effects of lutein on structural and dynamic properties of lipid membranes

Free fatty acids, like palmitic acid (PA), and xanthophyll pigments, like lutein (LUT) are the natural membrane compounds in plants. To study the effect of PA on LUT and their organization, a model membrane of 1,2-dimyristoyl-sn-glycerol-3-phosphocholine (DMPC) enriched with 2 mol% PA and 1 mol% LUT was formed. Molecular mechanisms underlying the interaction between these two compounds were examined with application of molecular spectroscopy techniques, e.g., visible spectroscopy, electron paramagnetic resonance and Fourier transform infrared. We determined the monomeric/dimeric organization of LUT in the membrane. We proved that the presence of PA in the lipid phase facilitated and stabilized the formation of LUT structures in the membrane. Lutein with PA did not form strong molecular aggregates like H- and J-structures. We presented the simplified model membrane that could be a suitable …

Jesus Tejero

Jesus Tejero

University of Pittsburgh

Archives of Biochemistry and Biophysics

Associating protein sequence positions with the modulation of quantitative phenotypes

Although protein sequences encode the information for folding and function, understanding their link is not an easy task. Unluckily, the prediction of how specific amino acids contribute to these features is still considerably impaired. Here, we developed a simple algorithm that finds positions in a protein sequence with potential to modulate the studied quantitative phenotypes. From a few hundred protein sequences, we perform multiple sequence alignments, obtain the per-position pairwise differences for both the sequence and the observed phenotypes, and calculate the correlation between these last two quantities. We tested our methodology with four cases: archaeal Adenylate Kinases and the organisms optimal growth temperatures, microbial rhodopsins and their maximal absorption wavelengths, mammalian myoglobins and their muscular concentration, and inhibition of HIV protease clinical isolates by two …

Mariusz Duda

Mariusz Duda

Uniwersytet Jagiellonski

Archives of Biochemistry and Biophysics

The presence of free palmitic acid modulates the effects of lutein on structural and dynamic properties of lipid membranes

Free fatty acids, like palmitic acid (PA), and xanthophyll pigments, like lutein (LUT) are the natural membrane compounds in plants. To study the effect of PA on LUT and their organization, a model membrane of 1,2-dimyristoyl-sn-glycerol-3-phosphocholine (DMPC) enriched with 2 mol% PA and 1 mol% LUT was formed. Molecular mechanisms underlying the interaction between these two compounds were examined with application of molecular spectroscopy techniques, e.g., visible spectroscopy, electron paramagnetic resonance and Fourier transform infrared. We determined the monomeric/dimeric organization of LUT in the membrane. We proved that the presence of PA in the lipid phase facilitated and stabilized the formation of LUT structures in the membrane. Lutein with PA did not form strong molecular aggregates like H- and J-structures. We presented the simplified model membrane that could be a suitable …

Janaina de Cássia Orlandi Sardi

Janaina de Cássia Orlandi Sardi

Universidade Federal de Mato Grosso do Sul

Archives of Biochemistry and Biophysics

Computer-made peptide RQ18 acts as a dual antifungal and antibiofilm peptide though membrane-associated mechanisms of action

The spread of fungi resistant to conventional drugs has become a threatening problem. In this context, antimicrobial peptides (AMPs) have been considered as one of the main alternatives for controlling fungal infections. Here, we report the antifungal and antibiofilm activity and some clues about peptide RQ18's mechanism of action against Candida and Cryptococcus. This peptide inhibited yeast growth from 2.5 μM and killed all Candida tropicalis cells within 2 h incubation. Moreover, it showed a synergistic effect with antifungal agent the amphotericin b. RQ18 reduced biofilm formation and promoted C. tropicalis mature biofilms eradication. RQ18's mechanism of action involves fungal cell membrane damage, which was confirmed by the results of RQ18 in the presence of free ergosterol in the medium and fluorescence microscopy by Sytox green. No toxic effects were observed in murine macrophage cell lines and …

Maksudbek Yusupov

Maksudbek Yusupov

Universiteit Antwerpen

Archives of Biochemistry and Biophysics

In silico study of the impact of oxidation on pyruvate transmission across the hVDAC1 protein channel

The overexpression of voltage dependent anion channels (VDACs), particularly VDAC1, in cancer cells compared to normal cells, plays a crucial role in cancer cell metabolism, apoptosis regulation, and energy homeostasis. In this study, we used molecular dynamics (MD) simulations to investigate the effect of a low level of VDAC1 oxidation (induced e.g., by cold atmospheric plasma (CAP)) on the pyruvate (Pyr) uptake by VDAC1. Inhibiting Pyr uptake through VDAC1 can suppress cancer cell proliferation. Our primary target was to study the translocation of Pyr across the native and oxidized forms of hVDAC1, the human VDAC1. Specifically, we employed MD simulations to analyze the hVDAC1 structure by modifying certain cysteine residues to cysteic acids and methionine residues to methionine sulfoxides, which allowed us to investigate the effect of oxidation. Our results showed that the free energy barrier for …

Professor Montaz Ali

Professor Montaz Ali

University of the Witwatersrand

Archives of Biochemistry and Biophysics

A novel approach of using Maca root as a radioprotector in a rat testicular damage model focusing on GRP78/CHOP/Caspase-3 pathway

PurposeDespite the effectiveness of ionizing radiation in treating cancer, it can damage healthy tissues in the vicinity. Due to the high radio-sensitivity of testicular tissues, radiation therapy may affect spermatogenesis, which may result in infertility. Hence, in this study testicular damage model is constructed to investigate the mitigation effect of Maca root powder and its potential radioprotective activity through both oxidative and endoplasmic reticulum (ER) stresses, besides the apoptotic pathway.MethodsMale albino rats were exposed to 6Gy of whole-body gamma radiation single dose. Maca root powder (1 g/kg b.wt./day, by oral gavage) was administered for a week before irradiation, then d-galactose (300 mg/kg, by oral gavage) and Maca daily for another week.ResultsGamma radiation and d-galactose revealed a significant decrease in serum testosterone, sperm count, and motility and higher percentage of the …

Mohamed Refaat Mahdi

Mohamed Refaat Mahdi

Mansoura University

Archives of Biochemistry and Biophysics

Human Wharton's jelly-derived mesenchymal stromal stem cells preconditioned with valproic acid promote cell migration and reduce renal inflammation in ischemia/reperfusion …

ObjectiveTo determine whether WJ-MSCs pretreated with VPA would enhance their migration to improve functional recovery of renal IRI in rats.Methods150 Sprague-Dawley rats were distributed into 5 groups; Sham, IRI, WJ-MSC, VPA, and WJ-MSCs + VPA. 10 rats were sacrificed after 3, 5, and 7 days. Role of WJ-MSCs pretreated with VPA was evaluated by assessment of renal function, antioxidant enzymes together with renal histopathological and immunohistopathological analyses and finally by molecular studies.ResultsWJ-MSCs and VPA significantly improved renal function and increased antioxidants compared to IRI group. Regarding gene expression, WJ-MSCs and VPA decreased BAX and TGF-β1, up-regulated Akt, PI3K, BCL2, SDF1α, and CXCR4 related to IRI. Additionally, WJ-MSCs pretreated with VPA improved the measured parameters more than either treatment alone.ConclusionWJ-MSCs …

Liang Zhang

Liang Zhang

Ottawa University

Archives of Biochemistry and Biophysics

Oridonin suppresses the growth of glioblastoma cells via inhibiting Hippo/YAP axis

Glioma is a brain tumor that originates from brain or spine glial cells. Despite alternative treatments, the overall survival rate remains low. Oridonin (ORI) is purified from the Chinese herb Rabdosia rubescens, which has exhibited positive effects on tumors. This study aimed to investigate the effect of ORI on U87MG glioblastoma cells and whether the Hippo/YAP-related signaling pathway was involved. Malignant glioblastoma U87MG cells and male athymic nude mice (BALB/cnu/nu) were used as the experimental models. The YAP inhibitor Verteporfin (VP) and the overexpression of YAP were used to investigate its potential relation with glioma. Here, we found that ORI inhibited cell proliferation and promoted cell apoptosis in a dose-dependent manner in U87MG cells. Moreover, ORI inhibited Bcl-2, YAP, and c-Myc protein expression but increased Bax, caspase-3, and p-YAP protein expression. Furthermore, the …

rania elrashidy

rania elrashidy

Zagazig University

Archives of Biochemistry and Biophysics

Oleuropein attenuates the nephrotoxic effect of sunitinib in rats: Unraveling the potential role of SIRT6/Notch-1/NLRP-3/IL-1β axis

Sunitinib (SUN) is a chemotherapeutic agent clinically approved for treatment of metastatic renal carcinoma. Despite its remarkable benefits, various renal toxicities have been reported that limit its clinical uses. Oleuropein (OLE) is the main polyphenolic constituent of olive tree and mediates the majority of its valuable pharmacological activities. The current study examined the probable renoprotective effects of OLE against SUN-induced nephrotoxicity. Adult male albino rats were co-treated by SUN (25mg/kg, 3 times/week, PO) with either a drug vehicle or OLE (60mg/kg/day, daily, PO) for four weeks. A control group comprising of age-matched rats was used. Four weeks later, blood specimens were collected to assess kidney functions. Kidneys were harvested for biochemical and histopathological analyses. Administration of SUN induced kidney dysfunction, along with marked rises in endothelin-1 (ET-1) and …

Ernesto Andrés Roman

Ernesto Andrés Roman

Universidad de Buenos Aires

Archives of Biochemistry and Biophysics

Associating protein sequence positions with the modulation of quantitative phenotypes

Although protein sequences encode the information for folding and function, understanding their link is not an easy task. Unluckily, the prediction of how specific amino acids contribute to these features is still considerably impaired. Here, we developed a simple algorithm that finds positions in a protein sequence with potential to modulate the studied quantitative phenotypes. From a few hundred protein sequences, we perform multiple sequence alignments, obtain the per-position pairwise differences for both the sequence and the observed phenotypes, and calculate the correlation between these last two quantities. We tested our methodology with four cases: archaeal Adenylate Kinases and the organisms optimal growth temperatures, microbial rhodopsins and their maximal absorption wavelengths, mammalian myoglobins and their muscular concentration, and inhibition of HIV protease clinical isolates by two …

Pavel Pospíšil

Pavel Pospíšil

Univerzita Palackého v Olomouci

Archives of Biochemistry and Biophysics

Oxidative modification of collagen by malondialdehyde in porcine skin

Human skin is exposed to various physical and chemical stress factors, which commonly cause the oxidation of lipids and proteins. In this study, azo initiator AAPH [2,2′ -azobis(2-methylpropionamidine) dihydrochloride] was employed to initiate lipid peroxidation in porcine skin as an ex vivo model for human skin. We demonstrate that malondialdehyde (MDA), a secondary product of lipid peroxidation, is covalently bound to collagen in the dermis, forming MDA-collagen adducts. The binding of MDA to collagen results in an unfolding of the collagen triple helix, formation of the dimer of α-chains of collagen, and fragmentation of the collagen α-chain. It is proposed here that the MDA is bound to the lysine residues of α-chain collagen, which are involved in electrostatic interaction and hydrogen bonding with the glutamate and aspartate of other α-chains of the triple helix. Our data provide crucial information about the …

Giuseppe Valacchi

Giuseppe Valacchi

Università degli Studi di Ferrara

Archives of Biochemistry and Biophysics

A proteomic approach to investigate the role of the MECP2 gene mutation in Rett syndrome redox regulatory pathways

Mutations in the X-linked methyl-CpG-binding 2 (MECP2) gene lead to Rett Syndrome (RTT; OMIM 312750), a devasting neurodevelopmental disorder. RTT clinical manifestations are complex and with different degrees of severity, going from autistic-like behavior to loss of acquired speech, motor skills and cardiac problems. Furthermore, the correlation between the type of MECP2 mutation and the clinical phenotype is still not fully understood.Contextually, different genotypes can differently affect the patient's phenotype and omics methodologies such as proteomics could be an important tool for a molecular characterization of genotype/phenotype correlation.The aim of our study was focused on evaluating RTT oxidative stress (OS) responses related to specific MECP2 gene mutations by using proteomics and bioinformatics approaches.Primary fibroblasts isolated from patients affected by R133C and R255× …

Tim Dafforn

Tim Dafforn

University of Birmingham

Archives of Biochemistry and Biophysics

GPCRs in the round: SMA-like copolymers and SMALPs as a platform for investigating GPCRs

G-protein-coupled receptors (GPCRs) are the largest family of membrane proteins, regulate a plethora of physiological responses and are the therapeutic target for 30–40% of clinically-prescribed drugs. They are integral membrane proteins deeply embedded in the plasma membrane where they activate intracellular signalling via coupling to G-proteins and β-arrestin. GPCRs are in intimate association with the bilayer lipids and that lipid environment regulates the signalling functions of GPCRs. This complex lipid ‘landscape’ is both heterogeneous and dynamic. GPCR function is modulated by bulk membrane properties including membrane fluidity, microdomains, curvature, thickness and asymmetry but GPCRs are also regulated by specific lipid:GPCR binding, including cholesterol and anionic lipids. Understanding the molecular mechanisms whereby GPCR signalling is regulated by lipids is a very active area of …

Mohammad Reza Ejtehadi

Mohammad Reza Ejtehadi

Sharif University of Technology

Archives of Biochemistry and Biophysics

In silico study of the impact of oxidation on pyruvate transmission across the hVDAC1 protein channel

The overexpression of voltage dependent anion channels (VDACs), particularly VDAC1, in cancer cells compared to normal cells, plays a crucial role in cancer cell metabolism, apoptosis regulation, and energy homeostasis. In this study, we used molecular dynamics (MD) simulations to investigate the effect of a low level of VDAC1 oxidation (induced e.g., by cold atmospheric plasma (CAP)) on the pyruvate (Pyr) uptake by VDAC1. Inhibiting Pyr uptake through VDAC1 can suppress cancer cell proliferation. Our primary target was to study the translocation of Pyr across the native and oxidized forms of hVDAC1, the human VDAC1. Specifically, we employed MD simulations to analyze the hVDAC1 structure by modifying certain cysteine residues to cysteic acids and methionine residues to methionine sulfoxides, which allowed us to investigate the effect of oxidation. Our results showed that the free energy barrier for …

Sarah Lee

Sarah Lee

University of Birmingham

Archives of Biochemistry and Biophysics

Purification and characterisation of the platelet-activating GPVI/FcRγ complex in SMALPs

The collagen/fibrin(ogen) receptor, glycoprotein VI (GPVI), is a platelet activating receptor and a promising anti-thrombotic drug target. However, while agonist-induced GPVI clustering on platelet membranes has been shown to be essential for its activation, it is unknown if GPVI dimerisation represents a unique conformation for ligand binding. Current GPVI structures all contain only the two immunoglobulin superfamily (IgSF) domains in the GPVI extracellular region, so lacking the mucin-like stalk, transmembrane, cytoplasmic tail of GPVI and its associated Fc receptor γ (FcRγ) homodimer signalling chain, and provide contradictory insights into the mechanisms of GPVI dimerisation. Here, we utilised styrene maleic-acid lipid particles (SMALPs) to extract GPVI in complex with its two associated FcRγ chains from transfected HEK-293T cells, together with the adjacent lipid bilayer, then purified and characterised the …

Ana Luísa Costa

Ana Luísa Costa

Universidade de Coimbra

Archives of Biochemistry and Biophysics

Prediction and biological analysis of yeast VDAC1 phosphorylation

The mitochondrial outer membrane protein porin 1 (Por1), the yeast orthologue of mammalian voltage-dependent anion channel (VDAC), is the major permeability pathway for the flux of metabolites and ions between cytosol and mitochondria. In yeast, several Por1 phosphorylation sites have been identified. Protein phosphorylation is a major modification regulating a variety of biological activities, but the potential biological roles of Por1 phosphorylation remains unaddressed.In this work, we analysed 10 experimentally observed phosphorylation sites in yeast Por1 using bioinformatics tools. Two of the residues, T100 and S133, predicted to reduce and increase pore permeability, respectively, were validated using biological assays. In accordance, Por1T100D reduced mitochondrial respiration, while Por1S133E phosphomimetic mutant increased it. Por1T100A expression also improved respiratory growth, while …

Khaled Barakat

Khaled Barakat

University of Alberta

Archives of Biochemistry and Biophysics

Identifying novel aryl hydrocarbon receptor (AhR) modulators from clinically approved drugs: In silico screening and In vitro validation

The aryl hydrocarbon receptor (AhR) functions as a vital ligand-activated transcription factor, governing both physiological and pathophysiological processes. Notably, it responds to xenobiotics, leading to a diverse array of outcomes. In the context of drug repurposing, we present here a combined approach of utilizing structure-based virtual screening and molecular dynamics simulations. This approach aims to identify potential AhR modulators from Drugbank repository of clinically approved drugs. By focusing on the AhR PAS-B binding pocket, our screening protocol included binding affinities calculations, complex stability, and interactions within the binding site as a filtering method. Comprehensive evaluations of all DrugBank small molecule database revealed ten promising hits. This included flibanserin, butoconazole, luliconazole, naftifine, triclabendazole, rosiglitazone, empagliflozin, benperidol, nebivolol, and …

Hongxin Zhao

Hongxin Zhao

Saint Louis University

Archives of Biochemistry and Biophysics

A New Preparation Method of Covalent Annular Nanodiscs Based on MTGase

The preservation of the native conformation and functionality of membrane proteins has posed considerable challenges. While detergents and liposome reconstitution have been traditional approaches, nanodiscs (NDs) offer a promising solution by embedding membrane proteins in phospholipids encircled by an amphipathic helical protein MSP belt. Nevertheless, a drawback of commonly used NDs is their limited homogeneity and stability. In this study, we present a novel approach to construct covalent annular nanodiscs (cNDs) by leveraging microbial transglutaminase (MTGase) to catalyze isopeptide bond formation between the side chains of terminal amino acids, specifically Lysine (K) and Glutamine (Q). This methodology significantly enhances the homogeneity and stability of NDs. Characterization of cNDs and the assembly of membrane proteins within them validate the successful reconstitution of …

Juan Palacios-Ortega

Juan Palacios-Ortega

Universidad Complutense de Madrid

Archives of Biochemistry and Biophysics

The interaction of the ribotoxin α-sarcin with complex model lipid vesicles

Fungal ribotoxins are extracellular RNases that inactivate ribosomes by cleaving a single phosphodiester bond at the universally conserved sarcin-ricin loop of the large rRNA. However, to reach the ribosomes, they need to cross the plasma membrane. It is there where these toxins show their cellular specificity, being especially active against tumoral or virus-infected cells. Previous studies have shown that fungal ribotoxins interact with negatively charged membranes, typically containing phosphatidylserine or phosphatidylglycerol. This ability is rooted on their long, non-structured, positively charged loops, and its N-terminal β-hairpin. However, its effect on complex lipid mixtures, including sphingophospholipids or cholesterol, remains poorly studied. Here, wild-type α-sarcin was used to evaluate its interaction with a variety of membranes not assayed before, which resemble much more closely mammalian cell …

Timoteo Marchini

Timoteo Marchini

Universidad de Buenos Aires

Archives of Biochemistry and Biophysics

Middle-age abolishes cardioprotection conferred by thioredoxin-1 in mice

Thioredoxin-1 (Trx1) has cardioprotective effects on ischemia/reperfusion (I/R) injury, although its role in ischemic postconditioning (PostC) in middle-aged mice is not understood. This study aimed to evaluate if combining two cardioprotective strategies, such as Trx1 overexpression and PostC, could exert a synergistic effect in reducing infarct size in middle-aged mice. Young or middle-aged wild-type mice (Wt), transgenic mice overexpressing Trx1, and dominant negative (DN-Trx1) mutant of Trx1 mice were used. Mice hearts were subjected to I/R or PostC protocol. Infarct size, hydrogen peroxide (H2O2) production, protein nitration, Trx1 activity, mitochondrial function, and Trx1, pAkt and pGSK3β expression were measured. PostC could not reduce infarct size even in the presence of Trx1 overexpression in middle-aged mice. This finding was accompanied by a lack of Akt and GSK3β phosphorylation, and Trx1 …