Ion-to-image, i2i, a mass spectrometry imaging data analysis platform for continuous ionization techniques

Analytical Chemistry

Published On 2023/7/28

Mass spectrometry imaging (MSI) techniques generate data that reveal spatial distributions of molecules on a surface with high sensitivity and selectivity. However, processing large volumes of mass spectrometry data into useful ion images is not trivial. Furthermore, data from MSI techniques using continuous ionization sources where data are acquired in line scans require different data handling strategies compared to data collected from pulsed ionization sources where data are acquired in grids. In addition, for continuous ionization sources, the pixel dimensions are influenced by the mass spectrometer duty cycle, which, in turn, can be controlled by the automatic gain control (AGC) for each spectrum (pixel). Currently, there is a lack of data-handling software for MSI data generated with continuous ionization sources and AGC. Here, we present ion-to-image (i2i), which is a MATLAB-based application for MSI data …

Journal

Analytical Chemistry

Published On

2023/7/28

Volume

95

Issue

31

Page

11589-11595

Authors

Kyle Duncan

Kyle Duncan

Vancouver Island University

Position

Department of Chemistry Nanaimo BC Canada

H-Index(all)

13

H-Index(since 2020)

12

I-10 Index(all)

0

I-10 Index(since 2020)

0

Citation(all)

0

Citation(since 2020)

0

Cited By

0

Research Interests

mass spectrometry

bioanalytical chemistry

electrospray ionization

mass spectrometry imaging

University Profile Page

Other Articles from authors

Kyle Duncan

Kyle Duncan

Vancouver Island University

Mass spectrometry imaging methods for visualizing tumor heterogeneity

HighlightsCurrent strategies to map lipids, metabolites, and proteins in tumor tissues.Recent biological insights obtained from MSI of tumor samples.Challenges in applying MSI to study tumor biology.Profiling spatial distributions of lipids, metabolites, and proteins in tumors can reveal unique cellular microenvironments and provide molecular evidence for cancer cell dysfunction and proliferation. Mass spectrometry imaging (MSI) is a label-free technique that can be used to map biomolecules in tumors in situ. Here, we discuss current progress in applying MSI to uncover molecular heterogeneity in tumors. First, the analytical strategies to profile small molecules and proteins are outlined, and current methods for multimodal imaging to maximize biological information are highlighted. Second, we present and summarize biological insights obtained by MSI of tumor tissue. Finally, we discuss important considerations for …

Kyle Duncan

Kyle Duncan

Vancouver Island University

Advances in Prostaglandin

Advances in Prostaglandin

Prostaglandins (PG) are a group of physiologically active lipid compounds called eicosanoids having diverse hormone-like effects in animals. Prostaglandins have been found in almost every tissue in humans and other animals. They are derived enzymatically from the fatty acid arachidonic acid.Every prostaglandin contains 20 carbon atoms, including a 5-carbon ring. They are a subclass of eicosanoids and of the prostanoid class of fatty acid derivatives. In the present book, twelve typical literatures about prostaglandin published on international authoritative journals were selected to introduce the worldwide newest progress, which contains reviews or original researches on prostaglandin. We hope this book can demonstrate advances in prostaglandin as well as give references to the researchers, students and other related people.

Kyle Duncan

Kyle Duncan

Vancouver Island University

Strategies for uncovering stable isotope tracing patterns between cell populations

HighlightsChallenges of using isotope tracers within the human tumor microenvironment (TME).Current models and analytics used for isotope tracing in humans.Strategies for uncovering cell-specific isotope tracing within the human TME.Despite practical complexities, isotope tracing studies in humans are becoming increasingly feasible. However, several technological challenges need to be addressed in order to take full advantage of human tracing studies. First, absolute metabolic flux measurements in mice are not so easily applied to human models, given that tissue resection is restricted to a single surgical time point. Second, isotope tracing has yet to be employed to detect metabolic differences between cells types in vivo. Here, we discuss the current models and propose an alternative, liquid tumor environment, that could overcome these limitations. Furthermore, we highlight current strategies used to …

Kyle Duncan

Kyle Duncan

Vancouver Island University

Analytical Chemistry

A direct infusion probe for rapid metabolomics of low-volume samples

Targeted and nontargeted metabolomics has the potential to evaluate and detect global metabolite changes in biological systems. Direct infusion mass spectrometric analysis enables detection of all ionizable small molecules, thus simultaneously providing information on both metabolites and lipids in chemically complex samples. However, to unravel the heterogeneity of the metabolic status of cells in culture and tissue a low number of cells per sample should be analyzed with high sensitivity, which requires low sample volumes. Here, we present the design and characterization of the direct infusion probe, DIP. The DIP is simple to build and position directly in front of a mass spectrometer for rapid metabolomics of chemically complex biological samples using pneumatically assisted electrospray ionization at 1 μL/min flow rate. The resulting data is acquired in a square wave profile with minimal carryover between …

Kyle Duncan

Kyle Duncan

Vancouver Island University

Environmental Science & Technology

Membrane Sampling Separates Naphthenic Acids from Biogenic Dissolved Organic Matter for Direct Analysis by Mass Spectrometry

Oil sands process waters can release toxic naphthenic acids (NAs) into aquatic environments. Analytical techniques for NAs are challenged by sample complexity and interference from naturally occurring dissolved organic matter (DOM). Herein, we report the use of a poly(dimethylsiloxane) (PDMS) polymer membrane for the on-line separation of NAs from DOM and use direct infusion electrospray ionization mass spectrometry to yield meaningful qualitative and quantitative information with minimal sample cleanup. We compare the composition of membrane-permeable species from natural waters fortified with a commercial NA mixture to those derived from weak anion exchange solid-phase extraction (SPE) using high-resolution mass spectrometry. The results show that SPE retains a wide range of carboxylic acids, including biogenic DOM, while permeation through PDMS was selective for petrogenic classically …

Kyle Duncan

Kyle Duncan

Vancouver Island University

Analytical Chemistry

Host–guest chemistry for simultaneous imaging of endogenous alkali metals and metabolites with mass spectrometry

Sodium and potassium are biological alkali metal ions that are essential for the physiological processes of cells and organisms. In combination with small-molecule metabolite information, disturbances in sodium and potassium tissue distributions can provide a further understanding of the biological processes in diseases. However, methods using mass spectrometry are generally tailored toward either elemental or molecular detection, which limits simultaneous quantitative mass spectrometry imaging of alkali metal ions and molecular ions. Here, we provide a new method by including crown ether molecules in the solvent for nanospray desorption electrospray ionization mass spectrometry imaging (nano-DESI MSI) that combines host–guest chemistry targeting sodium and potassium ions and quantitative imaging of endogenous lipids and metabolites. After evaluation and optimization, the method was applied to an …

Kyle Duncan

Kyle Duncan

Vancouver Island University

Communications Biology

In situ imaging reveals disparity between prostaglandin localization and abundance of prostaglandin synthases

Prostaglandins are important lipids involved in mediating many physiological processes, such as allergic responses, inflammation, and pregnancy. However, technical limitations of in-situ prostaglandin detection in tissue have led researchers to infer prostaglandin tissue distributions from localization of regulatory synthases, such as COX1 and COX2. Herein, we apply a novel mass spectrometry imaging method for direct in situ tissue localization of prostaglandins, and combine it with techniques for protein expression and RNA localization. We report that prostaglandin D2, its precursors, and downstream synthases co-localize with the highest expression of COX1, and not COX2. Further, we study tissue with a conditional deletion of transformation-related protein 53 where pregnancy success is low and confirm that PG levels are altered, although localization is conserved. Our studies reveal that the abundance of …

Kyle Duncan

Kyle Duncan

Vancouver Island University

Advanced mass spectrometry-based analytical separation techniques for probing the polar metabolome

State-of-the-art capillary electrophoresis mass spectrometry methods for analyzing the polar metabolome

Coupling capillary electrophoresis (CE) to mass spectrometry (MS) provides a powerful approach to profile polar metabolites from biological samples. In particular, the high separation capacity of CE in conjunction with the high specificity of MS allows for hundreds to thousands of electrophoretic peaks to be discriminated by their unique mass-to-charge values. This chapter provides an overview of coupling CE to MS for analyzing polar metabolites, including methods of CE sample injection, common CE–MS interfaces, considerations for selecting an appropriate mass spectrometer, and sample preparation methods. We cover recent studies published in 2013 or later that employ CE–MS to screen for polar metabolites in urine, plasma, serum, cell and tissue extracts. In addition, we cover recent CE–MS methods that analyze minute samples such as single cells, where the limited sample material requires extraordinary …

Kyle Duncan

Kyle Duncan

Vancouver Island University

Analytical and Bioanalytical Chemistry

CpG preconditioning reduces accumulation of lysophosphatidylcholine in ischemic brain tissue after middle cerebral artery occlusion

Ischemic stroke is one of the major causes of death and permanent disability in the world. However, the molecular mechanisms surrounding tissue damage are complex and further studies are needed to gain insights necessary for development of treatment. Prophylactic treatment by administration of cytosine-guanine (CpG) oligodeoxynucleotides has been shown to provide neuroprotection against anticipated ischemic injury. CpG binds to Toll-like receptor 9 (TLR9) causing initialization of an inflammatory response that limits visible ischemic damages upon subsequent stroke. Here, we use nanospray desorption electrospray ionization (nano-DESI) mass spectrometry imaging (MSI) to characterize molecular effects of CpG preconditioning prior to middle cerebral artery occlusion (MCAO) and reperfusion. By doping the nano-DESI solvent with appropriate internal standards, we can study and compare …

Kyle Duncan

Kyle Duncan

Vancouver Island University

Journal of the American Society for Mass Spectrometry

Determination of Monounsaturated Fatty Acid Isomers in Biological Systems by Modeling MS3 Product Ion Patterns

Unsaturated free fatty acids are natively present in biological samples as isomers, where double bonds can be situated on different carbons in the acyl chain. While these isomers can have different actions and impacts on biological systems, they are inherently difficult to identify and differentiate by mass spectrometry alone. To address this challenge, several techniques for derivatization of the double bond or metal cationization at the carboxylic group have yielded diagnostic product ions for the respective isomer in tandem mass spectrometry. However, diagnostic product ions do not necessarily reflect quantitative isomeric ratios since fatty acid isomers have different ionization and fragmentation efficiencies. Here, we introduce a simple and rapid approach to predict the quantitative ratio of isomeric monounsaturated fatty acids. Specifically, empirically derived MS3 product ion patterns from fatty acid silver adducts are …

Kyle Duncan

Kyle Duncan

Vancouver Island University

[Post-print] Direct analysis of naphthenic acids in constructed wetland samples by condensed phase membrane introduction mass spectrometry

The application of direct mass spectrometry techniques to the analysis of complex samples has a number of advantages including reduced sample handling, higher sample throughput, in situ process monitoring, and the potential for adaptation to on-site analysis. We report the application of a semi-permeable capillary hollow fibre membrane probe (immersed directly into an aqueous sample) coupled to a triple quadrupole mass spectrometer by a continuously flowing methanol acceptor phase for the rapid analysis of naphthenic acids with unit mass resolution. The intensity of the naphthenic acid-associated peaks in the mass spectrum are normalized to an internal standard in the acceptor phase for quantitation and the relative abundance of the peaks in the mass spectrum are employed to monitor compositional changes in the naphthenic acid mixture using principle component analysis. We demonstrate the direct analysis of a synthetic oil sands process-affected water for classical naphthenic acids (CnH2n+ zO2) as they are attenuated through constructed wetlands containing sedge (Carex aquatilis), cattail (Typha latifolia), or bulrush (Schoenoplectus acutus). Quantitative results for on-line membrane sampling compare favourably to those obtained by solid-phase extraction high-resolution mass spectrometry. Additionally, chemometric analysis of the mass spectra indicates a clear discrimination between naphthenic acid-influenced and natural background waters. Furthermore, the compositional changes within complex naphthenic acid mixtures track closely with the degree of attenuation. Overall, the technique is successful in following changes …

Kyle Duncan

Kyle Duncan

Vancouver Island University

Science of the total environment

Direct analysis of naphthenic acids in constructed wetland samples by condensed phase membrane introduction mass spectrometry

The application of direct mass spectrometry techniques to the analysis of complex samples has a number of advantages including reduced sample handling, higher sample throughput, in situ process monitoring, and the potential for adaptation to on-site analysis. We report the application of a semi-permeable capillary hollow fibre membrane probe (immersed directly into an aqueous sample) coupled to a triple quadrupole mass spectrometer by a continuously flowing methanol acceptor phase for the rapid analysis of naphthenic acids with unit mass resolution. The intensity of the naphthenic acid-associated peaks in the mass spectrum are normalized to an internal standard in the acceptor phase for quantitation and the relative abundance of the peaks in the mass spectrum are employed to monitor compositional changes in the naphthenic acid mixture using principle component analysis. We demonstrate the direct …

Other articles from Analytical Chemistry journal

Yu Xia

Yu Xia

Tsinghua University

Analytical Chemistry

Shotgun Lipidomic Profiling of Sebum Lipids via Photocatalyzed Paternò–Büchi Reaction and Ion Mobility-Mass Spectrometry

Sebum lipids are composed of nonpolar lipids, and they pose challenges for mass spectrometry-based analysis due to low ionization efficiency and the existence of numerous isomers and isobars. To address these challenges, we have developed ethyl 2-oxo-2-(pyridine-3-yacetate as a charge-tagging Paternò–Büchi reagent and Michler’s ketone as a highly efficient photocatalyst, achieving ∼90% conversion for C═C derivatization under 440 nm LED irradiation. This derivatization, when coupled with electrospray ionization-tandem mass spectrometry, boosts the detection of sebum lipids and pinpoints C═C location in a chain-specific fashion. Identification and quantitation of isomers are readily achieved for wax esters, a class of underexplored sebum lipids, which have C═C bonds distributed in fatty alcohol and fatty acyl chains. A shotgun analysis workflow has been developed by pairing the offline PB …

Yuxing Yao

Yuxing Yao

Harvard University

Analytical Chemistry

Quantitative Real-Time Analysis of Living Materials by Stimulated Raman Scattering Microscopy

Composite materials built in part from living organisms have the potential to exhibit useful autonomous, adaptive, and self-healing behavior. The physicochemical, biological, and mechanical properties of such materials can be engineered through the genetic manipulation of their living components. Successful development of living materials will require not only new methods for design and preparation but also new analytical tools that are capable of real-time noninvasive mapping of chemical compositions. Here, we establish a strategy based on stimulated Raman scattering microscopy to monitor phosphatase-catalyzed mineralization of engineered bacterial films in situ. Real-time label-free imaging elucidates the mineralization process, quantifies both the organic and inorganic components of the material as functions of time, and reveals spatial heterogeneity at multiple scales. In addition, we correlate the …

Christian Brix Folsted Andersen

Christian Brix Folsted Andersen

Aarhus Universitet

Analytical Chemistry

Highly Responsive Bioassay for Quantification of Glucocorticoids

Measurement of total cortisol levels in serum samples is currently based on immunoassays or liquid chromatography–mass spectrometry (LC–MS/MS). However, measurement of bioavailable cortisol is laborious, unreliable, and inconvenient for the patient. Therefore, a new versatile assay with the ability to measure both total and bioavailable cortisol from serum represents an important supplement to the current methods. We have generated a cell-based glucocorticoid reporter assay (HEK293F-GRE). The assay was validated for cell line stability, accuracy by dilution, precision, repeatability, reproducibility, and specificity. Additionally, the assay was tested for measuring both total and bioavailable cortisol in serum. The assay showed linearity at five dilution levels with R2 = 0.98 and an accuracy between 0.8 and 1.2. Precision (CV < 20%) was validated down to 3–6 nM dexamethasone, and estimation of the total …

Aldo Laganà

Aldo Laganà

Sapienza Università di Roma

Analytical Chemistry

Preparation of Monolith for Online Extraction and LC–MS Analysis of β-Estradiol in Serum Via a Simple Multicomponent Reaction

Multicomponent reactions offer efficient and environmentally friendly strategies for preparing monoliths suitable for applications in analytical chemistry. In the described study, a multicomponent reaction was utilized for the one-pot miniaturized preparation of a poly(propargyl amine) polymer inside commercial silica-lined PEEK tubing. The reaction involved only small amounts of reagents and was characterized by atom economy. The resulting monolithic column was incorporated into an autosampler system for the online extraction and cleanup of β-estradiol from human serum. Sample pretreatment was simplified to a simple dilution with methanol and centrifugation to remove proteins. The resulting platform included LC–MS analysis in multiple reaction monitoring for quantitative analysis of β-estradiol. The method was validated in serum, demonstrating practical applicability for the monitoring of fertile women …

weiwei zhao

weiwei zhao

Nanjing University

Analytical Chemistry

Highly Light-Harvesting MOF-on-MOF Heterostructure: Cascading Functionality to Flexible Photogating of Organic Photoelectrochemical Transistor and Bienzyme Cascade Detection

Recently, organic photoelectrochemical transistor (OPECT) bioanalysis has become a prominent technique for the high-performance detection of biomolecules. However, as a sensitive index of the OPECT, the dynamic regulation transconductance (gm) is still severely deficient. Herein, this work reports a new photosensitive metal–organic framework (MOF-on-MOF) heterostructure for the effective modulation of maximum gm and natural bienzyme interfacing toward choline detection. Specifically, the bidentate ligand MOF (b-MOF) was assembled onto the UiO-66 MOF (u-MOF) by a modular assembly method, which could facilitate the charge separation and generate enhanced photocurrents and offer a biophilic environment for the immobilization of choline oxidase (ChOx) and horseradish peroxidase (HRP) through hydrogen-bonded bridges. The transconductance of the OPECT could be flexibly altered by …

Kārlis Bērziņš

Kārlis Bērziņš

University of Otago

Analytical Chemistry

In Situ Imaging of Subcutaneous Drug Delivery Systems Using Microspatially Offset Low-Frequency Raman Spectroscopy

The noninvasive in situ monitoring of the status of drug retention and implant integrity of subcutaneous implants would allow optimization of therapy and avoid periods of subtherapeutic delivery kinetics. A proof-of principle study was conducted to determine the use of microspatially offset low-frequency Raman spectroscopy (micro-SOLFRS) for nonintrusive in situ analysis of subcutaneous drug delivery systems. Caffeine was used as the model drug, and it was embedded in a circular-shape Soluplus matrix via vacuum compression molding. For the exploratory analysis, prototype implants were positioned underneath skin tissue samples, and various caffeine concentrations (1–50% w/w) and micro-SOLFRS displacement settings (Δz = 0–8 mm) were tested from the pseudo three-dimensional (3D)-imaging perspective. This format allowed the optimization of real-time micro-SOLFRS analysis of implants through skin …

Qinjingwen Cao

Qinjingwen Cao

University of Wisconsin-Madison

Analytical Chemistry

Comprehensive Impurity Profiling of mRNA: Evaluating Current Technologies and Advanced Analytical Techniques

In vitro transcription (IVT) of mRNA is a versatile platform for a broad range of biotechnological applications. Its rapid, scalable, and cost-effective production makes it a compelling choice for the development of mRNA-based cancer therapies and vaccines against infectious diseases. The impurities generated during mRNA production can potentially impact the safety and efficacy of mRNA therapeutics, but their structural complexity has not been investigated in detail yet. This study pioneers a comprehensive profiling of IVT mRNA impurities, integrating current technologies with innovative analytical tools. We have developed highly reproducible, efficient, and stability-indicating ion-pair reversed-phase liquid chromatography and capillary gel electrophoresis methods to determine the purity of mRNA from different suppliers. Furthermore, we introduced the applicability of microcapillary electrophoresis for high …

Laura Anfossi

Laura Anfossi

Università degli Studi di Torino

Analytical Chemistry

Merging Lateral Flow Immunoassay with Electroanalysis as a Novel Sensing Platform: Prostate Specific Antigen Detection as Case of Study

The COVID-19 pandemic highlighted lateral flow immunoassay (LFIA) strips as the most known point-of-care (POC) devices enabling rapid and easy detection of relevant biomarkers by nonspecialists. However, these diagnostic tests are usually associated with the qualitative detection of the biomarker of interest. Alternatively, electrochemical-based diagnostics, especially known for diabetes care, enable quantitative determination of biomarkers. From an analytical point perspective, the combination of the two approaches might represent a step forward for the POC world: in fact, electrochemical transduction is attractive to be integrated into LFIA strips due to its simplicity, high sensitivity, fast signal generation, and cost effectiveness. In this work, a LFIA strip has been combined with an electrochemical transduction, yielding an electrochemical LFIA (eLFIA). As a proof-of-concept method, the detection of prostate …

Yuchao Li

Yuchao Li

Jinan University

Analytical Chemistry

Combined Mutual Learning Net for Raman Spectral Microbial Strain Identification

Infectious diseases pose a significant threat to global health, yet traditional microbiological identification methods suffer from drawbacks, such as high costs and long processing times. Raman spectroscopy, a label-free and noninvasive technique, provides rich chemical information and has tremendous potential in fast microbial diagnoses. Here, we propose a novel Combined Mutual Learning Net that precisely identifies microbial subspecies. It demonstrated an average identification accuracy of 87.96% in an open-access data set with thirty microbial strains, representing a 5.76% improvement. 50% of the microbial subspecies accuracies were elevated by 1% to 46%, especially for E. coli 2 improved from 31% to 77%. Furthermore, it achieved a remarkable subspecies accuracy of 92.4% in the custom-built fiber-optical tweezers Raman spectroscopy system, which collects Raman spectra at a single-cell level. This …

Christoph Grevelding

Christoph Grevelding

Justus-Liebig-Universität Giessen

Analytical Chemistry

Hepatic Topology of Glycosphingolipids in Schistosoma mansoni-Infected Hamsters

Schistosomiasis is a neglected tropical disease caused by worm parasites of the genus Schistosoma. Upon infection, parasite eggs can lodge inside of host organs like the liver. This leads to granuloma formation, which is the main cause of the pathology of schistosomiasis. To better understand the different levels of host–pathogen interaction and pathology, our study focused on the characterization of glycosphingolipids (GSLs). For this purpose, GSLs in livers of infected and noninfected hamsters were studied by combining high-spatial-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) with nanoscale hydrophilic interaction liquid chromatography tandem mass spectrometry (nano-HILIC MS/MS). Nano-HILIC MS/MS revealed 60 GSL species with a distinct saccharide and ceramide composition. AP-SMALDI MSI …

Tao ZHANG

Tao ZHANG

South China Normal University

Analytical Chemistry

An AND-Gate Photoacoustic Probe for Cys and H2S Precise Photoacoustic Sensing in Localized Tumors

Photoacoustic (PA) tomography has shown many promising aspects in noninvasive and precise imaging of deep-localized biomarkers. However, these traditional single-locked PA probes always face challenges in precise PA imaging with high specificity. Here, we report a novel AND-gate photoacoustic probe, BAE, to improve tumor imaging accuracy via the combination of two tumor-associated biomarkers, cysteine (Cys) and hydrogen sulfide (H2S). Only when Cys and H2S are concurrently introduced into the detection system does the absorption of BAE red-shift from the initial 680 to 810 nm, thereby showing a 5.29-fold enhancement in its PA signal at 810 nm. The good specificity of BAE is proven, since an obvious PA signal could be observed only in the solution containing both Cys and H2S and was not affected by other reactive sulfur species. After being taken up by tumors with the assistance of a …

Lutz Ahrens

Lutz Ahrens

Sveriges lantbruksuniversitet

Analytical Chemistry

Harmonized quality assurance/quality control provisions to assess completeness and robustness of MS1 data preprocessing for LC-HRMS-based suspect screening and non-targeted …

A set of quality assurance/quality control (QA/QC) criteria for nontargeted measurement of pesticide exposure markers in a large-scale study of human urine has been proposed and applied across five laboratories within the HBM4EU project. Quality control material, including reference standards and fortified pooled urine samples (QC urine) were prepared in a centralized way and distributed across participants to monitor analytical performance and consistency of the liquid chromatography coupled to high-resolution mass spectrometry data generated with a harmonized workflow. Signal intensities, mass accuracy, and retention times of selected QA/QC markers covering a broad range of physicochemical properties were monitored across QC solvent standards, QC urine samples, study urine samples, and procedural blanks, setting acceptance thresholds for repeatability and accuracy. Overall, results showed high …

Paul J. Hergenrother

Paul J. Hergenrother

University of Illinois at Urbana-Champaign

Analytical Chemistry

Precise Readout of MEK1 Proteoforms upon MAPK Pathway Modulation by Individual Ion Mass Spectrometry

The functions of proteins bearing multiple post-translational modifications (PTMs) are modulated by their modification patterns, yet precise characterization of them is difficult. MEK1 (also known as MAP2K1) is one such example that acts as a gatekeeper of the mitogen-activating protein kinase (MAPK) pathway and propagates signals via phosphorylation by upstream kinases. In principle, top-down mass spectrometry can precisely characterize whole MEK1 proteoforms, but fragmentation methods that would enable the site-specific characterization of labile modifications on 43 kDa protein ions result in overly dense tandem mass spectra. By using the charge-detection method called individual ion mass spectrometry, we demonstrate how complex mixtures of phosphoproteoforms and their fragment ions can be reproducibly handled to provide a “bird’s eye” view of signaling activity through mapping proteoform …

Karol Jaroch

Karol Jaroch

Uniwersytet Mikolaja Kopernika w Toruniu

Analytical Chemistry

Proteomic Analysis of Human Saliva via Solid-Phase Microextraction Coupled with Liquid Chromatography–Mass Spectrometry

Proteomics of human saliva samples was achieved for the first time via biocompatible solid-phase microextraction (bio-SPME) devices. Upon introduction of a porogen to a conventional C18 coating, porous C18/polyacrylonitrile (PAN) SPME blades were able to extract peptides up to 3.0 kDa and more peptides than commercial SPME blades. Following Trypsin digestion, salivary proteomic analysis was achieved via SPME-LC-MS/MS. Seven endogenous proteins were consistently identified in all saliva samples via bio-SPME. Taking advantage of this strategy, untargeted peptidomics was applied for the comparison of saliva samples between healthy and SARS-CoV-2 positive individuals. The results showed clear peptidomic differences between the viral and healthy saliva samples. This proof-of-concept study demonstrates the potential of bio-SPME-LC-MS/MS for peptidomics and proteomics in biomedical …

Katsumasa Fujita

Katsumasa Fujita

Osaka University

Analytical Chemistry

Imaging vs Nonimaging Raman Spectroscopy for High-Throughput Single-Cell Phenotyping

Raman spectroscopy can provide nonbiased single-cell analysis based on the endogenous ensemble of biomolecules, with alterations in cellular content indicative of cell state and disease. The measurements themselves can be performed in a variety of modes: generally, full imaging takes the most time but can provide the most information. By reducing the imaging resolution and generating the most characteristic single-cell Raman spectrum in the shortest time, we optimize the utility of the Raman measurement for cell phenotyping. Here, we establish methods to compare these different measurement approaches and assess what, if any, undesired effects occur in the cell. Assuming that laser-induced damage should be apparent as a change in molecular spectra across sequential measurements, and by defining the information content as the Raman-based separability of two cell lines, we thereby establish a …

Kittikhun Wangkanont

Kittikhun Wangkanont

Chulalongkorn University

Analytical Chemistry

Overlaid Lateral Flow Immunoassay for the Simultaneous Detection of Two Variant-Specific SARS-CoV-2 Neutralizing Antibodies

COVID-19 vaccines have been provided to the general public to build immunity since the 2019 coronavirus pandemic. Once vaccinated, SARS-CoV-2 neutralizing antibodies (NAbs-COVID-19) are needed for excellent protection against COVID-19. However, monitoring NAbs-COVID-19 is complicated and requires hospital visits. Moreover, the resulting NAbs-COVID-19 are effective against different strains of COVID-19 depending on the type of vaccine received. Here, an overlaid lateral flow immunoassay (O-LFIA) was developed for the simultaneous detection of two NAbs-COVID-19 against different virus strains, Delta and Omicron. The O-LFIA was visualized with two T-lines with a single device using competition between the free antigen and the antigen-binding antibody. Angiotensin-converting enzyme 2 (ACE2) immobilized on the T-line binds to the antigen remaining after antibody binding. Under the optimum …

Jau-Song Yu

Jau-Song Yu

Chang Gung University

Analytical Chemistry

Systematic Evaluation of Chromatographic Peak Quality for Targeted Mass Spectrometry via Variational Autoencoder

Targeted mass spectrometry is a powerful technique for quantifying specific proteins or metabolites in complex biological samples. Accurate peak picking is a critical step as it determines the absolute abundance of each analyte by integrating the area under the picked peaks. Although automated software exists for handling such complex tasks, manual intervention is often required to rectify potential errors like misclassification or mis-picking events, which can significantly affect quantification accuracy. Therefore, it is necessary to develop objective scoring functions to evaluate peak-picking results and to identify problematic cases for further inspection. In this study, we present targeted mass spectrometry quality encoder (TMSQE), a data-driven scoring function that summarizes peak quality in three types: transition level, peak group level, and consistency level across samples. Through unsupervised learning from …

Barbaros Cetin

Barbaros Cetin

Bilkent Üniversitesi

Analytical Chemistry

Novel 3D-Printed Microfluidic Magnetic Platform for Rapid DNA Isolation

This study presents a novel miniaturized device as a 3D-printed microfluidic magnetic platform specifically designed to manipulate magnetic microparticles in a microfluidic chip for rapid deoxyribonucleic acid (DNA) isolation. The novel design enables the movement of the magnetic particles in the same or opposite directions with the flow or suspends them in continuous flow. A computational model was developed to assess the effectiveness of the magnetic manipulation of the particles. Superparamagnetic monodisperse silica particles synthesized in-house are utilized for the isolation of fish sperm DNA and human placenta DNA. It was demonstrated that the proposed platform can perform DNA isolation within 10 min with an isolation efficiency of 50% at optimum operating conditions.

Slava Shkirskiy

Slava Shkirskiy

Université d'Angers

Analytical Chemistry

Deciphering the Interplay between Local and Global Dynamics of Anodic Metal Oxidation

The stark difference between global and local metal oxidation dynamics underscores the need for methodologies capable of performing precise sub-μm-scale and wide-field measurements. In this study, we present reflective microscopy as a tool developed to address this challenge, illustrated by the example of chronoamperometric Fe oxidation in a NaCl solution. Analysis at a local scale of 10 s of μm has revealed three distinct periods of Fe oxidation: the initial covering of the metal interface with a surface film, followed by the electrochemical conversion of the formed surface film, and finally, the in-depth oxidation of Fe. In addition, thermodynamic calculations and the quantitative analysis of changes in optical signal (light intensity), correlated with variations in refractive indexes, suggest the initial formation of maghemite, followed by its subsequent conversion to magnetite. The reactivity maps for all three periods are …

Dariusz Mitoraj

Dariusz Mitoraj

Universität Ulm

Analytical Chemistry

Pt-Black-Modified (Hemi)spherical AFM Sensors: In Situ Imaging of Light-Driven Hydrogen Peroxide Evolution

In this work, we present (hemi)spherical atomic force microscopy (AFM) sensors for the detection of hydrogen peroxide. Platinum-black (Pt-B) was electrodeposited onto conductive colloidal AFM probes or directly at recessed microelectrodes located at the end of a tipless cantilever, resulting in electrocatalytically active cantilever-based sensors that have a small geometric area but, due to the porosity of the films, exhibit a large electroactive surface area. Focused ion beam-scanning electron microscopy tomography revealed the porous 3D structure of the deposited Pt-B. Given the accurate positioning capability of AFM, these probes are suitable for local in situ sensing of hydrogen peroxide and at the same time can be used for (electrochemical) force spectroscopy measurements. Detection limits for hydrogen peroxide in the nanomolar range (LOD = 68 ± 7 nM) were obtained. Stability test and first in situ proof-of …