Cytochrome P450 enzymes as drug targets in human disease

Drug Metabolism and Disposition

Published On 2023/1/1

Although the mention of cytochrome P450 (P450, CYP) inhibition usually brings to mind unwanted variability in pharmacokinetics, in several cases P450s are good targets for inhibition. These P450s are essential but in certain disease states it is desirable to reduce the concentrations of their products. Most of the attention to date has been with human P450s 5A1, 11A1, 11B1, 11B2, 17A1, 19A1, and 51A1. In some of those cases, there are multiple drugs in us, e.g., exemestane, letrozole, and anastrozole with P450 19A1, the steroid aromatase target in breast cancer. There are also several targets that are less developed, e. g. P450s 2A6, 8B1, 4A11, 24A1, 26A1, and 26B1.Significance Statement The selective inhibition of certain P450s that have major physiological functions has been shown to be very efficacious in certain human diseases. In several cases the search for better drugs continues.

Journal

Drug Metabolism and Disposition

Published On

2023/1/1

Authors

Fred Guengerich

Fred Guengerich

Vanderbilt University

Position

Professor of Biochemistry

H-Index(all)

175

H-Index(since 2020)

51

I-10 Index(all)

0

I-10 Index(since 2020)

0

Citation(all)

0

Citation(since 2020)

0

Cited By

0

Research Interests

Enzymology

drug metabolism

cytochrome P450

mutagenesis

University Profile Page

Other Articles from authors

Fred Guengerich

Fred Guengerich

Vanderbilt University

Journal of Medicinal Chemistry

Identification of Potent and Selective Inhibitors of Acanthamoeba: Structural Insights into Sterol 14α-Demethylase as a Key Drug Target

Fat mass obesity-associated protein (FTO) is a DNA/RNA demethylase involved in the epigenetic regulation of various genes and is considered a therapeutic target for obesity, cancer, and neurological disorders. Here, we aimed to design novel FTO-selective inhibitors by merging fragments of previously reported FTO inhibitors. Among the synthesized analogues, compound 11b, which merges key fragments of Hz (3) and MA (4), inhibited FTO selectively over alkylation repair homologue 5 (ALKBH5), another DNA/RNA demethylase. Treatment of acute monocytic leukemia NOMO-1 cells with a prodrug of 11b decreased the viability of acute monocytic leukemia cells, increased the level of the FTO substrate N6-methyladenosine in mRNA, and induced upregulation of MYC and downregulation of RARA, which are FTO target genes. Thus, Hz (3)/MA (4) hybrid analogues represent an entry into a new class of FTO …

Fred Guengerich

Fred Guengerich

Vanderbilt University

Chemical Research in Toxicology

In Vivo and In Vitro Induction of Cytochrome P450 3A4 by Thalidomide in Humanized-Liver Mice and Experimental Human Hepatocyte HepaSH cells

Autoinduction of cytochrome P450 (P450) 3A4-mediated metabolism of thalidomide was investigated in humanized-liver mice and human hepatocyte-derived HepaSH cells. The mean plasma ratios of 5-hydroxythalidomide and glutathione adducts to thalidomide were significantly induced (3.5- and 6.0-fold, respectively) by thalidomide treatment daily at 1000 mg/kg for 3 days and measured at 2 h after the fourth administration (on day 4). 5-Hydroxythalidomide was metabolically activated by P450 3A4 in HepaSH cells pretreated with 300 and 1000 μM thalidomide, and 5,6-dihydroxythalidomide was detected. Significant induction of P450 3A4 mRNA expression (4.1-fold) in the livers of thalidomide-treated mice occurred. Thalidomide exerts a variety of actions through multiple mechanisms following bioactivation by induced human P450 3A enzymes.

Fred Guengerich

Fred Guengerich

Vanderbilt University

Formation of potentially toxic metabolites of drugs in reactions catalyzed by human drug-metabolizing enzymes

Data are presented on the formation of potentially toxic metabolites of drugs that are substrates of human drug metabolizing enzymes. The tabular data lists the formation of potentially toxic/reactive products. The data were obtained from in vitro experiments and showed that the oxidative reactions predominate (with 96% of the total potential toxication reactions). Reductive reactions (e.g., reduction of nitro to amino group and reductive dehalogenation) participate to the extent of 4%. Of the enzymes, cytochrome P450 (P450, CYP) enzymes catalyzed 72% of the reactions, myeloperoxidase (MPO) 7%, flavin-containing monooxygenase (FMO) 3%, aldehyde oxidase (AOX) 4%, sulfotransferase (SULT) 5%, and a group of minor participating enzymes to the extent of 9%. Within the P450 Superfamily, P450 Subfamily 3A (P450 3A4 and 3A5) participates to the extent of 27% and the Subfamily 2C (P450 2C9 and P450 2C19 …

Fred Guengerich

Fred Guengerich

Vanderbilt University

Journal of Biological Chemistry

Proteomics, modeling, and fluorescence assays delineate cytochrome b5 residues involved in binding and stimulation of cytochrome P450 17A1 17, 20-lyase

Cytochrome b5 (b5) is known to stimulate some catalytic activities of cytochrome P450 (P450, CYP) enzymes, although mechanisms still need to be defined. The reactions most strongly enhanced by b5 are the 17,20-lyase reactions of P450 17A1 involved in steroid biosynthesis. We had previously used a fluorescently labeled human b5 variant (Alexa 488-T70C-b5) to characterize human P450 17A1-b5 interactions, but subsequent proteomic analyses indicated that lysines in b5 were also modified with Alexa 488 maleimide in addition to Cys-70, due to disulfide dimerization of the T70C mutant. A series of b5 variants were constructed with Cys replacements for the identified lysine residues and labeled with the dye. Fluorescence attenuation and the function of b5 in the steroid lyase reaction depended on the modified position. Apo-b5 (devoid of heme group) studies revealed the lack of involvement of the b5 heme in …

Fred Guengerich

Fred Guengerich

Vanderbilt University

Angewandte Chemie

Oxygen‐18 Labeling Reveals a Mixed Fe− O Mechanism in the Last Step of Cytochrome P450 51 Sterol 14α‐Demethylation

The 14α‐demethylation step is critical in eukaryotic sterol biosynthesis, catalyzed by cytochrome P450 (P450) Family 51 enzymes, for example, with lanosterol in mammals. This conserved three‐step reaction terminates in a C−C cleavage step that generates formic acid, the nature of which has been controversial. Proposed mechanisms involve roles of P450 Compound 0 (ferric peroxide anion, FeO2−) or Compound I (perferryl oxygen, FeO3+) reacting with either the aldehyde or its hydrate, respectively. Analysis of 18O incorporation into formic acid from 18O2 provides a means of distinguishing the two mechanisms. Human P450 51A1 incorporated 88 % 18O (one atom) into formic acid, consistent with a major but not exclusive FeO2− mechanism. Two P450 51 orthologs from amoeba and yeast showed similar results, while two orthologs from pathogenic trypanosomes showed roughly equal contributions of both …

Fred Guengerich

Fred Guengerich

Vanderbilt University

Journal of Biological Chemistry

Ninety-eight semesters of cytochrome P450 enzymes and related topics—What have I taught and learned?

This Reflection article begins with my family background and traces my career through elementary and high school, followed by time at the University of Illinois, Vanderbilt University, the University of Michigan, and then for 98 semesters as a Vanderbilt University faculty member. My research career has dealt with aspects of cytochrome P450 enzymes, and the basic biochemistry has had applications in fields as diverse as drug metabolism, toxicology, medicinal chemistry, pharmacogenetics, biological engineering, and bioremediation. I am grateful for the opportunity to work with the Journal of Biological Chemistry not only as an author but also for 34 years as an Editorial Board Member, Associate Editor, Deputy Editor, and interim Editor-in-Chief. Thanks are extended to my family and my mentors, particularly Profs. Harry Broquist and Minor J. Coon, and the more than 170 people who have trained with me. I have …

Fred Guengerich

Fred Guengerich

Vanderbilt University

ACS catalysis

Oxygen-18 Labeling Defines a Ferric Peroxide (Compound 0) Mechanism in the Oxidative Deformylation of Aldehydes by Cytochrome P450 2B4

Most cytochrome P450 (P450) oxidations are considered to occur with the active oxidant being a perferryl oxygen (FeO3+, Compound I). However, a ferric peroxide (FeO2̅, Compound 0) mechanism has been proposed, as well, particularly for aldehyde substrates. We investigated three of these systems, the oxidative deformylation of the model substrates citronellal, 2-phenylpropionaldehyde, and 2-methyl-2-phenylpropionaldehyde by rabbit P450 2B4, using 18O labeling. The formic acid product contained one 18O derived from 18O2, which is indicative of a dominant Compound 0 mechanism. The formic acid also contained only one 18O derived from H218O, which ruled out a Compound I mechanism. The possibility of a Baeyer–Villiger reaction was examined by using synthesized possible intermediates, but our data do not support its presence. Overall, these findings unambiguously demonstrate the role of the …

Fred Guengerich

Fred Guengerich

Vanderbilt University

Principles of Xenobiotic Metabolism (Biotransformation)

This chapter provides a general overview of metabolic reactions and their significance. Basic concepts and terminology related to biotransformation, activity, and toxicityToxicity are explained and discussed. Major enzymes involved in oxidationOxidation, reductionReduction, hydrolytic, and conjugationConjugation are covered including enzyme nomenclature, localization, catalytic cycle, coenzymes, relevance of individual enzymes, types of reactions, substrates and metabolites, influence of metabolic reactions on the activity/toxicity of xenobiotics, enzyme inhibition, and relevance if applicable.

Fred Guengerich

Fred Guengerich

Vanderbilt University

Journal of Biological Chemistry

The multistep oxidation of cholesterol to pregnenolone by human cytochrome P450 11A1 is highly processive

Cytochrome P450 (P450, CYP) 11A1 is the classical cholesterol side chain cleavage enzyme (P450scc) that removes six carbons of the side chain, the first and rate-limiting step in the synthesis of all mammalian steroids. The reaction is a 3-step, 6-electron oxidation that proceeds via formation of 22R-hydroxy (OH) and 20R,22R-(OH)2 cholesterol, yielding pregnenolone. We expressed human P450 11A1 in bacteria, purified the enzyme in the absence of nonionic detergents, and assayed pregnenolone formation by HPLC-mass spectrometry of the dansyl hydrazone. The reaction was inhibited by the nonionic detergent Tween 20, and several lipids did not enhance enzymatic activity. The 22R-OH and 20R,22R-(OH)2 cholesterol intermediates were bound to P450 11A1 relatively tightly, as judged by steady-state optical titrations and koff rates. The electron donor adrenodoxin had little effect on binding; the substrate …

2023/11/24

Article Details
Fred Guengerich

Fred Guengerich

Vanderbilt University

Journal of Biological Chemistry

Processive kinetics in the three-step lanosterol 14α-demethylation reaction catalyzed by human cytochrome P450 51A1

Cytochrome P450 (P450, CYP) family 51 enzymes catalyze the 14α-demethylation of sterols, leading to critical products used for membranes and the production of steroids, as well as signaling molecules. In mammals, P450 51 catalyzes the 3-step, 6-electron oxidation of lanosterol to form (4β,5α)-4,4-dimethyl-cholestra-8,14,24-trien-3-ol (FF-MAS). P450 51A1 can also use 24,25-dihydrolanosterol (a natural substrate in the Kandutsch-Russell cholesterol pathway). 24,25-Dihydrolanosterol and the corresponding P450 51A1 reaction intermediates, the 14α-alcohol and -aldehyde derivatives of dihydrolanosterol, were synthesized to study the kinetic processivity of the overall 14α-demethylation reaction of human P450 51A1. A combination of steady-state kinetic parameters, steady-state binding constants, dissociation rates of P450-sterol complexes, and kinetic modeling of the time course of oxidation of a P450 …

Fred Guengerich

Fred Guengerich

Vanderbilt University

Nucleic Acids Research

Basis for the discrimination of supercoil handedness during DNA cleavage by human and bacterial type II topoisomerases

To perform double-stranded DNA passage, type II topoisomerases generate a covalent enzyme-cleaved DNA complex (i.e. cleavage complex). Although this complex is a requisite enzyme intermediate, it is also intrinsically dangerous to genomic stability. Consequently, cleavage complexes are the targets for several clinically relevant anticancer and antibacterial drugs. Human topoisomerase IIα and IIβ and bacterial gyrase maintain higher levels of cleavage complexes with negatively supercoiled over positively supercoiled DNA substrates. Conversely, bacterial topoisomerase IV is less able to distinguish DNA supercoil handedness. Despite the importance of supercoil geometry to the activities of type II topoisomerases, the basis for supercoil handedness recognition during DNA cleavage has not been characterized. Based on the results of benchtop and rapid-quench flow kinetics experiments, the forward …

Fred Guengerich

Fred Guengerich

Vanderbilt University

Xenobiotica

The influence of temperature on the metabolic activity of CYP2C9, CYP2C19, and CYP3A4 genetic variants in vitro

1. Temperature is considered to affect the activity of drug-metabolizing enzymes; however, no previous studies have compared temperature dependency among cytochrome P450 genetic variants. This study aimed to analyse warfarin 7-hydroxylation by CYP2C9 variants; omeprazole 5-hydroxylation by CYP2C19 variants; and midazolam 1-hydroxylation by CYP3A4 variants at 34 °C, 37 °C, and 40 °C.2. Compared with that seen at 37 °C, the intrinsic clearance rates (Vmax/Km) of CYP2C9.1 and .2 were decreased (76 ∼ 82%), while that of CYP2C9.3 was unchanged at 34 °C. At 40 °C, CYP2C9.1, .2, and .3 exhibited increased (121%), unchanged and decreased (87%) intrinsic clearance rates, respectively. At 34 °C, the clearance rates of CYP2C19.1A and .10 were decreased (71 ∼ 86%), that of CYP2C19.1B was unchanged, and those of CYP2C19.8 and .23 were increased (130 ∼ 134%). At 40 …

Fred Guengerich

Fred Guengerich

Vanderbilt University

Food and Chemical Toxicology

FEMA GRAS assessment of natural flavor complexes: Lemongrass oil, chamomile oils, citronella oil and related flavoring ingredients

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a program for the re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavor ingredients. This publication, eleventh in the series, evaluates the safety of NFCs characterized by primary alcohol, aldehyde, carboxylic acid, ester and lactone constituents derived from terpenoid biosynthetic pathways and/or lipid metabolism. The scientific-based evaluation procedure published in 2005 and updated in 2018 that relies on a complete constituent characterization of the NFC and organization of the constituents into congeneric groups. The safety of the NFCs is evaluated using the threshold of toxicological concern (TTC) concept in addition to data on estimated intake, metabolism and toxicology of members of the congeneric groups and for the NFC under evaluation. The scope of the safety evaluation …

Fred Guengerich

Fred Guengerich

Vanderbilt University

Food and Chemical Toxicology

FEMA GRAS assessment of derivatives of basil, nutmeg, parsley, tarragon and related allylalkoxybenzene-containing natural flavor complexes

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a program for the re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavoring ingredients in food. In this publication, tenth in the series, NFCs containing a high percentage of at least one naturally occurring allylalkoxybenzene constituent with a suspected concern for genotoxicity and/or carcinogenicity are evaluated. In a related paper, ninth in the series, NFCs containing anethole and/or eugenol and relatively low percentages of these allylalkoxybenzenes are evaluated. The Panel applies the threshold of toxicological concern (TTC) concept and evaluates relevant toxicology data on the NFCs and their respective constituent congeneric groups. For NFCs containing allylalkoxybenzene constituent(s), the estimated intake of the constituent is compared to the TTC for compounds with structural …

Fred Guengerich

Fred Guengerich

Vanderbilt University

International Journal of Molecular Sciences

Identification of Three Human POLH Germline Variants Defective in Complementing the UV-and Cisplatin-Sensitivity of POLH-Deficient Cells

DNA polymerase (pol) η is responsible for error-free translesion DNA synthesis (TLS) opposite ultraviolet light (UV)-induced cis-syn cyclobutane thymine dimers (CTDs) and cisplatin-induced intrastrand guanine crosslinks. POLH deficiency causes one form of the skin cancer-prone disease xeroderma pigmentosum variant (XPV) and cisplatin sensitivity, but the functional impacts of its germline variants remain unclear. We evaluated the functional properties of eight human POLH germline in silico-predicted deleterious missense variants, using biochemical and cell-based assays. In enzymatic assays, utilizing recombinant pol η (residues 1—432) proteins, the C34W, I147N, and R167Q variants showed 4- to 14-fold and 3- to 5-fold decreases in specificity constants (kcat/Km) for dATP insertion opposite the 3’-T and 5′-T of a CTD, respectively, compared to the wild-type, while the other variants displayed 2- to 4-fold increases. A CRISPR/Cas9-mediated POLH knockout increased the sensitivity of human embryonic kidney 293 cells to UV and cisplatin, which was fully reversed by ectopic expression of wild-type pol η, but not by that of an inactive (D115A/E116A) or either of two XPV-pathogenic (R93P and G263V) mutants. Ectopic expression of the C34W, I147N, and R167Q variants, unlike the other variants, did not rescue the UV- and cisplatin-sensitivity in POLH-knockout cells. Our results indicate that the C34W, I147N, and R167Q variants—substantially reduced in TLS activity—failed to rescue the UV- and cisplatin-sensitive phenotype of POLH-deficient cells, which also raises the possibility that such hypoactive germline POLH variants may …

Fred Guengerich

Fred Guengerich

Vanderbilt University

Journal of inorganic biochemistry

Hydroxylation and lyase reactions of steroids catalyzed by mouse cytochrome P450 17A1 (Cyp17a1)

Cytochrome P450 17A1 (CYP17A1) catalyzes 17α-hydroxylation and 17,20-lyase reactions with steroid hormones. Mice contain an orthologous Cyp17a1 enzyme in the genome, and its amino acid sequence has high similarity with human CYP17A1. We purified recombinant mouse Cyp17a1 and characterized its oxidation reactions with progesterone and pregnenolone. The open reading frame of the mouse Cyp17a1 gene was inserted and successfully expressed in Escherichia coli and then purified using Ni2+-nitrilotriacetic acid (NTA) affinity column chromatography. Purified mouse Cyp17a1 displayed typical Type I binding titration spectral changes upon the addition of progesterone, 17α-OH progesterone, pregnenolone, and 17α-OH pregnenolone, with similar binding affinities to those of human CYP17A1. Catalytic activities for 17α-hydroxylation and 17,20-lyase reactions were studied using ultra-performance …

Fred Guengerich

Fred Guengerich

Vanderbilt University

The Importance of Biotransformation

Biotransformation is important in considerations of toxicity of chemicals. What begins as a well-defined compound may lead to a mixture of chemicals after it enters the body. The changes may be beneficial or detrimental. A potentially harmful chemical may be rapidly inactivated, at low doses. Conversely, an innocuous compound may be transformed into a toxic one. There are cases of both detoxication and bioactivation for the same chemical, sometimes even with the same enzyme being involved in both changes (e.g., aflatoxin B1 and cytochrome P450 3A4). A proper understanding of the chemical changes, the enzymes involved, and the kinetics of changes is needed to understand the outcomes regarding safety assessment.

Fred Guengerich

Fred Guengerich

Vanderbilt University

Steroid 17α-hydroxylase/17, 20-lyase (cytochrome P450 17A1)

Cytochrome P450 (P450) 17A1 plays a key role in steroidogenesis, in that this enzyme catalyzes the 17α-hydroxylation of both pregnenolone and progesterone, followed by a lyase reaction to cleave the C-20 land C-21 carbons from each steroid. The reactions are important in the production of both glucocorticoids and androgens. The enzyme is critical in humans but is also a drug target in treatment of prostate cancer. Detailed methods are described for the heterologous expression of human P450 17A1 in bacteria, purification of the recombinant enzyme, reconstitution of the enzyme system in the presence of cytochrome b5, and chromatographic procedures for sensitive analyses of reaction products. Historic assay approaches are reviewed. Some information is also provided about outstanding questions in the research field, including catalytic mechanisms and searches for selective inhibitors.

Fred Guengerich

Fred Guengerich

Vanderbilt University

Direct addition of flavors, including taste and flavor modifiers

The addition of flavorings to food and beverages provides practically unlimited opportunities for innovation, for maintaining and enhancing palatability, and is one essential element of a stable supply of nutritious consumer products. A safety evaluation by the Flavor and Extract Manufacturers Association (FEMA) Expert Panel provides a pathway for flavor producers and users to achieve regulatory authority to use for substances under the conditions of intended use as a flavoring. This chapter describes the factors that contribute to the safety assessment process that is conducted by the Expert Panel, and provides examples of specific flavorings and types of flavorings that are considered. The chapter also describes future issues and opportunities likely to be encountered within the context of the FEMA generally recognized as safe assessment of flavorings.

Other articles from Drug Metabolism and Disposition journal

Thorsten Lehr

Thorsten Lehr

Universität des Saarlandes

Drug Metabolism and Disposition

Physiologically based pharmacokinetic modeling of imatinib and N‐desmethyl imatinib for drug–drug interaction predictions

Bosentan is a substrate of hepatic uptake transporter organic anion–transporting polypeptides (OATPs), and undergoes extensive hepatic metabolism by cytochrome P450 (P450), namely, CYP3A4 and CYP2C9. Several clinical investigations have reported a nonlinear relationship between bosentan doses and its systemic exposure, which likely involves the saturation of OATP-mediated uptake, P450-mediated metabolism, or both in the liver. Yet, the underlying causes for the nonlinear bosentan pharmacokinetics are not fully delineated. To address this, we performed physiologically based pharmacokinetic (PBPK) modeling analyses for bosentan after its intravenous administration at different doses. As a bottom-up approach, PBPK modeling analyses were performed using in vitro kinetic parameters, other relevant parameters, and scaling factors. As top-down approaches, three different types of PBPK models that …

Dmitri R Davydov

Dmitri R Davydov

Washington State University

Drug Metabolism and Disposition

Differential tissue abundance of membrane-bound drug metabolizing enzymes and transporter proteins by global proteomics

Protein abundance data of drug-metabolizing enzymes and transporters (DMETs) are critical for scaling in vitro and animal data to humans for accurate prediction and interpretation of drug clearance and toxicity. Targeted DMET proteomics which relies on synthetic stable isotope-labeled surrogate peptides as calibrators, is routinely used for the quantification of selected proteins; however, the technique is limited to the quantification of a small number of proteins. Although the global proteomics-based total protein approach (TPA) is emerging as a better alternative for large-scale protein quantification, the conventional TPA doesn9t consider differential sequence coverage by identifying unique peptides across proteins. Here, we optimized the TPA approach by correcting protein abundance data by the sequence coverage (SC-TPA), which was applied to quantify 54 DMETs for characterization of i) differential tissue …

Klarissa D Jackson

Klarissa D Jackson

University of North Carolina at Chapel Hill

Drug Metabolism and Disposition

Kinase Inhibitors FDA-Approved 2018-2023: Drug Targets, Metabolic Pathways, and Drug-Induced Toxicities

Small molecule kinase inhibitors are one of the fastest growing classes of drugs, which are approved by the US Food and Drug Administration (FDA) for cancer and non-cancer indications. As of September 2023, there were over 70 FDA-approved small molecule kinase inhibitors on the market, 42 of which were approved in the past five years (2018-2023). This minireview discusses recent advances in our understanding of the pharmacology, metabolism, and toxicity profiles of recently approved kinase inhibitors with a central focus on tyrosine kinase inhibitors (TKIs). In this minireview we discuss the most common therapeutic indications and molecular target(s) of kinase inhibitors FDA-approved 2018-2023. We also describe unique aspects of the metabolism, bioactivation, and drug-drug interaction (DDI) potential of kinase inhibitors; discuss drug toxicity concerns related to kinase inhibitors, such as drug-induced …

Jingwei Cai

Jingwei Cai

Penn State University

Drug Metabolism and Disposition

An Integrated Hepatocyte Stability Assay for Simultaneous Metabolic Stability Assessment and Metabolite Profiling

The determination of metabolic stability is critical for drug discovery programs, allowing for the optimization of chemical entities and compound prioritization. As such, it is common to perform high-volume in vitro metabolic stability experiments early in the lead optimization process to understand metabolic liabilities. Additional metabolite identification experiments are subsequently performed for a more comprehensive understanding of the metabolic clearance routes to aid medicinal chemists in the structural design of compounds. Collectively, these experiments require extensive sample preparation and a substantial amount of time and resources. To overcome the challenges, a high-throughput integrated assay for simultaneous hepatocyte metabolic stability assessment and metabolite profiling was developed. This assay platform consists of four parts: 1) an automated liquid-handling system for sample preparation …

Tyler N. Graf

Tyler N. Graf

University of North Carolina at Greensboro

Drug Metabolism and Disposition

Pharmacokinetic Effects of Different Models of Nonalcoholic Fatty Liver Disease in Transgenic Humanized OATP1B Mice

Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 (collectively, OATP1B) transporters encoded by the solute carrier organic anion transporter (SLCO) genes mediate uptake of multiple pharmaceutical compounds. Nonalcoholic steatohepatitis (NASH), a severe form of nonalcoholic fatty liver disease (NAFLD), decreases OATP1B abundance. This research characterized the pathologic and pharmacokinetics effects of three diet- and one chemical-induced NAFLD model in male and female humanized OATP1B mice, which comprises knock-out of rodent Oatp orthologs and insertion of human SLCO1B1 and SLCO1B3. Histopathology scoring demonstrated elevated steatosis and inflammation scores for all NAFLD-treatment groups. Female mice had minor changes in SLCO1B1 expression in two of the four NAFLD treatment groups, and pitavastatin (PIT) area under the concentration-time curve (AUC …

Robyn Meech

Robyn Meech

Flinders University

Drug Metabolism and Disposition

Activation of Cryptic Donor Splice Sites Within the UGT1A First-Exon Region Generates Variant Transcripts That Encode UGT1A Proteins With Truncated Aglycone-binding Domains

The human UDP-glucuronosyltransferases (UGTs) have crucial roles in metabolizing and clearing numerous small lipophilic compounds. The UGT1A locus generates nine UGT1A mRNAs, 65 spliced transcripts and 34 circular RNAs. In this study, our analysis of published UGT-CaptureSeq datasets identified novel splice junctions that predict 24 variant UGT1A transcripts derived from ligation of exon 2 to unique sequences within the UGT1A first-exon region using cryptic donor splice sites. Of these variants, seven (1A1_n1, 1A3_n3, 1A4_n4, 1A5_n1, 1A8_n2, 1A9_n2v, 1A10_n7) are predicted to encode UGT1A proteins with truncated aglycone-binding domains. We assessed their expression profiles and deregulation in cancer using four RNA-seq datasets of paired normal and cancerous drug-metabolizing tissues from large patient cohorts. Variants were generally co-expressed with their canonical counterparts …

Deepak

Deepak

Washington State University

Drug Metabolism and Disposition

Differential tissue abundance of membrane-bound drug metabolizing enzymes and transporter proteins by global proteomics

Protein abundance data of drug-metabolizing enzymes and transporters (DMETs) are critical for scaling in vitro and animal data to humans for accurate prediction and interpretation of drug clearance and toxicity. Targeted DMET proteomics which relies on synthetic stable isotope-labeled surrogate peptides as calibrators, is routinely used for the quantification of selected proteins; however, the technique is limited to the quantification of a small number of proteins. Although the global proteomics-based total protein approach (TPA) is emerging as a better alternative for large-scale protein quantification, the conventional TPA doesn9t consider differential sequence coverage by identifying unique peptides across proteins. Here, we optimized the TPA approach by correcting protein abundance data by the sequence coverage (SC-TPA), which was applied to quantify 54 DMETs for characterization of i) differential tissue …

Pieter Annaert

Pieter Annaert

Katholieke Universiteit Leuven

Drug Metabolism and Disposition

Physiologically-Based Pharmacokinetic Modeling for Drugs Cleared by Non-Cytochrome P450 Enzymes: State-of-the-Art and Future Perspectives

In a previous study on the human mass balance of DS-1971a, a selective NaV1.7 inhibitor, its CYP2C8-dependent metabolite M1 was identified as a human disproportionate metabolite. The present study assessed the usefulness of pharmacokinetic evaluation in chimeric mice grafted with human hepatocytes (PXB-mice) and physiologically based pharmacokinetic (PBPK) simulation of M1. After oral administration of radiolabeled DS-1971a, the most abundant metabolite in the plasma, urine, and feces of PXB-mice was M1, while those of control SCID mice were aldehyde oxidase-related metabolites including M4, suggesting a drastic difference in the metabolism between these mouse strains. From a qualitative perspective, the metabolite profile observed in PXB-mice was remarkably similar to that in humans, but the quantitative evaluation indicated that the area under the plasma concentration-time curve (AUC …

Steve Han, M.D., Ph.D.

Steve Han, M.D., Ph.D.

Harvard University

Drug Metabolism and Disposition

Effects of Strong Inhibition of Cytochrome P450 3A and UDP glucuronosyltransferase 1A9 and Strong Induction of Cytochrome P450 3A on the Pharmacokinetics, Safety, and …

Two open-label, phase 1 studies (NCT05064449, NCT05098041) investigated the effects of cytochrome P450 (CYP) 3A inhibition (via itraconazole), UDP glucuronosyltransferase (UGT) 1A9 inhibition (via mefenamic acid), and CYP3A induction (via rifampin) on the pharmacokinetics of soticlestat and its metabolites M-I and M3. In period 1 of both studies, participants received a single dose of soticlestat 300 mg. In period 2, participants received itraconazole on days 1–11 and soticlestat 300 mg on day 5 (itraconazole/mefenamic acid study; part 1); mefenamic acid on days 1–7 and soticlestat 300 mg on day 2 (itraconazole/mefenamic acid study; part 2); or rifampin on days 1–13 and soticlestat 300 mg on day 11 (rifampin study). Twenty-eight healthy adults participated in the itraconazole/mefenamic acid study (14 per part) and 15 participated in the rifampin study (mean age, 38.1–40.7 years; male, 79–93%). For …

Bhagwat Prasad

Bhagwat Prasad

Washington State University

Drug Metabolism and Disposition

Effect of cimetidine on metformin pharmacokinetics and endogenous metabolite levels in rats

Tubular secretion is a primary mechanism along with glomerular filtration for renal elimination of drugs and toxicants into urine. Organic cation transporters (OCTs) and multidrug and toxic extrusion (MATE) transporters facilitate the active secretion of cationic substrates, including drugs such as metformin and endogenous cations. We hypothesized that administration of cimetidine, an Oct/Mate inhibitor, will result in increased plasma levels and decreased renal clearance of metformin and endogenous Oct/Mate substrates in rats. A paired rat pharmacokinetic study was carried out in which metformin (5 mg/kg, intravenous) was administered as an exogenous substrate of Oct/Mate transporters to six Sprague-Dawley rats with and without cimetidine (100 mg/kg, intraperitoneal). When co-administered with cimetidine, metformin area under the curve increased significantly by 3.2-fold, and its renal clearance reduced …

dong gui hu

dong gui hu

Flinders University

Drug Metabolism and Disposition

Activation of Cryptic Donor Splice Sites Within the UGT1A First-Exon Region Generates Variant Transcripts That Encode UGT1A Proteins With Truncated Aglycone-binding Domains

The human UDP-glucuronosyltransferases (UGTs) have crucial roles in metabolizing and clearing numerous small lipophilic compounds. The UGT1A locus generates nine UGT1A mRNAs, 65 spliced transcripts and 34 circular RNAs. In this study, our analysis of published UGT-CaptureSeq datasets identified novel splice junctions that predict 24 variant UGT1A transcripts derived from ligation of exon 2 to unique sequences within the UGT1A first-exon region using cryptic donor splice sites. Of these variants, seven (1A1_n1, 1A3_n3, 1A4_n4, 1A5_n1, 1A8_n2, 1A9_n2v, 1A10_n7) are predicted to encode UGT1A proteins with truncated aglycone-binding domains. We assessed their expression profiles and deregulation in cancer using four RNA-seq datasets of paired normal and cancerous drug-metabolizing tissues from large patient cohorts. Variants were generally co-expressed with their canonical counterparts …

Yasuhiro Uno

Yasuhiro Uno

Kagoshima University

Drug Metabolism and Disposition

Novel tree shrew cytochrome P450 2Ds (CYP2D8a and CYP2D8b) are functional drug-metabolizing enzymes that metabolize bufuralol and dextromethorphan

Tree shrews are a nonprimate species used in a range of biomedical studies. Recent genome analysis of tree shrews found that the sequence identities and the numbers of genes of cytochrome P450 (CYP or P450), an important family of drug-metabolizing enzymes, are similar to those of humans. However, tree shrew P450s have not yet been sufficiently identified and analyzed. In this study, novel CYP2D8a and CYP2D8b cDNAs were isolated from tree shrew liver and were characterized, along with human CYP2D6, dog CYP2D15, and pig CYP2D25. The amino acid sequences of these tree shrew CYP2Ds were 75%–78% identical to human CYP2D6, and phylogenetic analysis showed that they were more closely related to human CYP2D6 than rat CYP2Ds, similar to dog and pig CYP2Ds. For tree shrew CYP2D8b, two additional transcripts were isolated that contained different patterns of deletion. The gene …

Liang Zheng

Liang Zheng

China University of Geosciences Wuhan

Drug Metabolism and Disposition

Physiologically based pharmacokinetic modeling of ritonavir-oxycodone drug interactions and its implication for dosing strategy

Bosentan is a substrate of hepatic uptake transporter organic anion–transporting polypeptides (OATPs), and undergoes extensive hepatic metabolism by cytochrome P450 (P450), namely, CYP3A4 and CYP2C9. Several clinical investigations have reported a nonlinear relationship between bosentan doses and its systemic exposure, which likely involves the saturation of OATP-mediated uptake, P450-mediated metabolism, or both in the liver. Yet, the underlying causes for the nonlinear bosentan pharmacokinetics are not fully delineated. To address this, we performed physiologically based pharmacokinetic (PBPK) modeling analyses for bosentan after its intravenous administration at different doses. As a bottom-up approach, PBPK modeling analyses were performed using in vitro kinetic parameters, other relevant parameters, and scaling factors. As top-down approaches, three different types of PBPK models that …

Qian Zhang

Qian Zhang

University of Leeds

Drug Metabolism and Disposition

Physiologically based pharmacokinetic modeling of ritonavir-oxycodone drug interactions and its implication for dosing strategy

Bosentan is a substrate of hepatic uptake transporter organic anion–transporting polypeptides (OATPs), and undergoes extensive hepatic metabolism by cytochrome P450 (P450), namely, CYP3A4 and CYP2C9. Several clinical investigations have reported a nonlinear relationship between bosentan doses and its systemic exposure, which likely involves the saturation of OATP-mediated uptake, P450-mediated metabolism, or both in the liver. Yet, the underlying causes for the nonlinear bosentan pharmacokinetics are not fully delineated. To address this, we performed physiologically based pharmacokinetic (PBPK) modeling analyses for bosentan after its intravenous administration at different doses. As a bottom-up approach, PBPK modeling analyses were performed using in vitro kinetic parameters, other relevant parameters, and scaling factors. As top-down approaches, three different types of PBPK models that …

Samantha L. Jordan

Samantha L. Jordan

Florida State University

Drug Metabolism and Disposition

Low Molecular Weight Acids and Organic Anion Transporting Polypeptide (OATP1B)-Mediated Hepatic Clearance: In Vitro and In Vivo Evaluation Using Novel Hypoxia-Inducible Factor …

Organic anion transporting polypeptide (OATP1B) plays a key role in the hepatic clearance of a majority of high molecular weight (MW) acids and zwitterions. Here, we evaluated the role of OATP1B-mediated uptake in the clearance of novel hypoxia-inducible factor prolyl hydroxylase inhibitors (“dustats”), which are typically low MW (300–400 Da) aliphatic carboxylic acids. Five acid dustats, namely daprodustat, desidustat, enarodustat, roxadustat, and vadadustat, showed specific transport by OATP1B1/1B3 in transporter-transfected HEK293 cells. Neutral compound, molidustat, was not a substrate to OATP1B1/1B3. None of the dustats showed transport by other hepatic uptake transporters, including NTCP, OAT2, and OAT7. In the primary human hepatocytes, uptake of all acids was significantly reduced by rifampin (OATP1B inhibitor), with an estimated fraction transported by OATP1B (ft,OATP1B) of up to >80 …

Allan Rettie

Allan Rettie

University of Washington

Drug Metabolism and Disposition

There and Back Again: A Perspective on 20 Years of CYP4Z1

CYP4Z1, a highly expressed CYP gene in breast cancer, was one of the last CYPs to be identified in the human genome, some twenty years ago. CYP4 enzymes typically catalyze w-hydroxylation and metabolize w3 and w6 polyunsaturated fatty acids (PUFAs) to bioactive lipid metabolites that can influence tumor growth and metastasis. These attributes of CYP4Z1 make it an attractive target for new chemotherapeutic drug design, as a potential biomarker for selection of patients that might respond favorably to drugs and for developing enzyme inhibitors as potential therapeutic agents. This review summarizes the current state of knowledge regarding the advancing biochemistry of CYP4Z1, its role in breast cancer and the recent synthesis of selective chemical inhibitors of the enzyme. We identify gaps that need to be filled to further advance this field and present new experimental data on recombinant CYP4Z1 …

Libin Xu

Libin Xu

University of Washington

Drug Metabolism and Disposition

Interaction and Transport of Benzalkonium Chlorides by the Organic Cation and Multidrug and Toxin Extrusion Transporters

Humans are chronically exposed to benzalkonium chlorides (BACs) from environmental sources. The U.S. Food and Drug Administration (FDA) has recently called for additional BAC safety data, as these compounds are cytotoxic and have great potential for biochemical interactions. Biodistribution studies revealed that BACs extensively distribute to many tissues and accumulate at high levels, especially in the kidneys, but the underlying mechanisms are unclear. In this study, we characterized the interactions of BACs of varying alkyl chain length (C8 to C14) with the human organic cation transporters (hOCT1–3) and multidrug and toxin extrusion proteins (hMATE1/2K) with the goal to identify transporters that could be involved in BAC disposition. Using transporter-expressing cell lines, we showed that all BACs are inhibitors of hOCT1–3 and hMATE1/2K (IC50 ranging 0.83–25.8 μM). Further, the short-chain BACs …

Volker Lauschke

Volker Lauschke

Karolinska Institutet

Drug Metabolism and Disposition

Comparison of Human Long-Term Liver Models for Clearance Prediction of Slowly Metabolized Compounds

The accurate prediction of human clearance is an important task during drug development. The proportion of low clearance compounds has increased in drug development pipelines across the industry since such compounds may be dosed in lower amounts and at lower frequency. Such compounds present new challenges to in vitro systems used for clearance extrapolation. In this study we compared the accuracy of clearance predictions of suspension culture to four different long-term stable in vitro liver models, including HepaRG sandwich culture, the Hµrel stochastic co-culture, the Hepatopac micropatterned co-culture (MPCC) and a micro-array spheroid culture. Hepatocytes in long-term stable systems remained viable and active over several days of incubation. Although intrinsic clearance values were generally high in suspension culture, clearance of low turnover compounds could frequently not be …

Lindsay C. Czuba

Lindsay C. Czuba

University of Washington

Drug Metabolism and Disposition

LX-2 Stellate Cells Are a Model System for Investigating the Regulation of Hepatic Vitamin A Metabolism and Respond to Tumor Necrosis Factor α and Interleukin 1β

Hepatic stellate cells (HSCs) are the major site of vitamin A (retinol) esterification and subsequent storage as retinyl esters within lipid droplets. However, retinyl esters become depleted in many pathophysiological states, including acute and chronic liver injuries. Recently, using a liver slice culture system as a model of acute liver injury and fibrogenesis, a time-dependent increase and decrease in the apparent formation of the bioactive retinoid all-trans-retinoic acid (atRA) and retinyl palmitate was measured, respectively. This coincided with temporal changes in the gene expression of retinoid-metabolizing enzymes and binding proteins, that preceded HSC activation. However, the underlying mechanisms that promote early changes in retinoid metabolism remain unresolved. We hypothesized that LX-2 cells could be applied to investigate differences in quiescent and activated HSC retinoid metabolism. We …

guido cavaletti

guido cavaletti

Università degli Studi di Milano-Bicocca

Drug Metabolism and Disposition

Vincristine Disposition and Neurotoxicity Are Unchanged in Humanized CYP3A5 Mice

Previous studies have suggested that the incidence of vincristine-induced peripheral neuropathy (VIPN) is potentially linked with cytochrome P450 (CYP)3A5, a polymorphic enzyme that metabolizes vincristine in vitro, and with concurrent use of azole antifungals such as ketoconazole. The assumed mechanism for these interactions is through modulation of CYP3A-mediated metabolism, leading to decreased vincristine clearance and increased susceptibility to VIPN. Given the controversy surrounding the contribution of these mechanisms, we directly tested these hypotheses in genetically engineered mouse models with a deficiency of the entire murine Cyp3a locus [Cyp3a(−/−) mice] and in humanized transgenic animals with hepatic expression of functional and nonfunctional human CYP3A5 variants. Compared with wild-type mice, the systemic exposure to vincristine was increased by only 1.15-fold (95 …